IUTHOR.
 TITLE

INSTITUTION
SPONS AGBNCY PUB DATE GRANT
NOTE

EDRS PRICE DESCRIPTORS y

Acker, Frank E.
Power Processinq, Part 2. Modeling power Processing Devices and Circuits. Pittsburgh Univ.. Pa.
National Science Foundation. Washington. D.C.: 70
NSF-GY-. 4138
212p.: For related documeñts. see SE C29 295-297:
Best copy available
MF01/PC09 plus Postage.

* College Science: Curriculum Develcfment;

Electricity; Electronechanical. Technology:
Electronics: *Engineering Education: Higher
Education: Instructional Materials;*Science Courses:
Science Curriculun: *Science Educaticn; *Science
Materials: Scientific Concepts
ABSTRACT
This publication was developed as a porticn of a
ح two semester sequence comencing at either the sixth or the seventh term of the undergraduate program in electifcal engineering at the facisersity of pittsburgh. The materials of the two courses, produced byw National Science Foundaticn grant, are concerned with powar conversion systems comprising power electronic devices", electromechanical energy converters, and ssociated lcgic configurations necessary to cause the system to bebave in a prescribed fashion. The emphasis in this portion (Part 2) of the two course sequence is on modeling power processing devices and circuits. This publication consists of five chapters which deal with: (1) power diodes; (2) thyristors, or silicon controlled rectifiers: (3) modeling a live-voltage commutated inverter: (4) thermal characteristics of materials: and (5i a free-wheeling diode DC motor drive. An appendix which provides a suggested guide for a time schedule of presentation of material is also included. (HM)

,

*
Heproductions supplied by EDRS are the best that can be made * frcu the original document.

"Modeling Power Frocessing Devices and cireuits"

Frank li. Arker
University of littsburgh
-
-都

The preparation of thif material has been partilaliy supported by Grant GY-4138 entitled "Course Content Improvement Project for Power Processing" made to the University of Pittsburgh by the National science Foundation.

Copyright, 1970 by Frank E. Acker

0

;

Prelace

 course content for bwo trimesters. Allhough several nvailable botk: werr constdered and tried atis texts, none were Poumd to be suitetble in the llybt. of the obdectives of the course, and therefore this: book het: bern writhen t.e tubetll the reods sot the eourese.

 "rolovant.": Skill in modelines is amenurafed in two wity: . firest, the moblemb; the students are required to work aro frumed in lorms of rand eipouit oloment:s. The studentis mast deoide what idealizalions: ian he matr. iowendly, at: the

- The author considera modelthe the most important aspect of the course a: reflected by the subject material and organdzation of this book. I'wo of the most valuable athibutes of an englneer are his abllity to assimilate now terhnology, and his ability to apply basic science and technology (new (or old) to new problems. Without these attributes, the engineer is soon relagated to the position of a competent tectmictan. One of the most, if not the min:t, powerful tools used to maintaln these attributes is the engineer's. :akill in modeling, physical problems; that is, tos simplily the problem too the extreme so-that the basir parameters and operations become obvious, and then to reptace the necessary complexilies unt.it the model suffi-iently approsthes Whe real physical problem to dive valid engineering answers. The author therefore feel: hat, the gain in exaninits and modeling the problems in some detail lar sutweigh the disadvantage that less naterial (fewer cireults, probtems, and applications) an be considered in the given time.

There are : overal reasom: the stressing modeling in the particular "ourse on semiconductor power proressing. The primary objective in oftering 1.he course "Power processing IL" is to interest students in the power area of engineering. By incorporating the learning of a fundamental engineering skill (modeling) into the cursc, it may be possible to athract more or the "uncertain" students who may not want to commit themselves' to a speciflc area of electrical engineerlng. The subject material may then provide surficient challenge to interest these students in power engineering. Also, starting r from the students undergraduate background in clectronics, logic, and physics,人he students actually experience the extension of their knowledge into an unfamiliar technological area (semiconductor power processing) using the tool 'of modeling as well as using modeling to solve complicated problems. And of course, even the simplest problems in power procossing can onty be solved by
the atomadientitorward application of Kimohoffis laws with utmost difficulty,
 sollinitrg tool.

The laboratory requires some special mention. The laboratory problems
 * "typical" formal laboratory report required of each student. While realLife altuations sometimes require a "laboratory report," as in the testing, and evaluation f of an them or system, the most frequent use of an industrial laboratory is as an aid to finding the answer to a problem. The realistic 1abonatory problem associated with any problem ls "What laboratory experiment. should be done?" The student is given the choice of using the laboratory to gather data, confirm his theory, check assumptions, as an aid to understanding, device or circuit operation, or any combination of these. the students are not permitted, to enter the laboratory without a "plan" in which each student must. identify ag specific objective for the laboratory experiment, and a detailed plan to anat out the experiment. The students are graded on the basis of bow effective their laboratory objective will be in enabling them to solve the pratbem, and whether their detailed plan has a reasonable assurance of enabling: the students to accomplish their immediate objective. After the laboratory session, the students complete their assigned problem presenting "an answer" whiten is make t up by laboratory experiment and data. This type of laboratory hows proved much more interesting to the students and seems more in keeping wi th engineering education than simply "verifying calculations" or "to amoxstrating effects."

The author gratefully acknow ledges the continuing financial support. of the National Science Foundation throughout the design and establishment. of the course "Power Processing II." The author also thanks Ir. H. IB. -llamill.oni and
vi
Dr. 'T. W. Sze, University of Pittsburgh, for their aid and comments during the design of the course, and the author is particularly grateful to Mr.alec H. B: Walker, Westinghouse Research Laobratory, for his continuing assistance in, selecting the course material and acting as an expert technical reference to. the present state of the art. The author also acknowledges the preliminary, course design and notes of Dr.' John Choma, Jr., Sacramento State collqge.

Dr. Frank E. Acker

Table of contentis

limetrance
Ohapter : 1 Power Diodes
Chapter Contents 1
The ebkectron-Hdle Model vif semt conductor 7.
The Semiconducting Pure Orystal 2
Doped 'seml conductors 5
'Summary 7
Conduction in Semiconductors 9
The Ideal Diode 15
Power Diodes 31
Diodes in Series and Parallel 37
Modeling a Simple Diodë Circuit 43
Exercises 52
Problems 53
Fabonatory Problems 55
References 56
Chapter 2 .Thyristors, or Silicon Controlled Rectifiers
Chapter contents 57
The Thyristor or SCR 57
BCR Construction 59
The SCR as a Series of Diodes: 61
The IWo Tran istor Model of an SCR 72
BCR Transient Characteristics 82
SCR Trigger Circuits 87
\$CR 'lurn-off Circuits 102
Summary 110
Bxercises 111
Problems 111
Laboratory Problems 113
References 114
Chapter 3 Modeling a Line-Voltage Commutated Inverter
Introduction 115
The Line-Voltdige' Commutated Inverter 115
Modeling the Circuit \#l . . . Y. 116
Modeling the Circuit \#2 126

- Modeling the circuit \#3 127
Summary 133
Exercises 135
Problems 136
Laboratory Problems 137
Keferences 139
Chapter ${ }_{4}$ Thermal Characteristics of Materials
Introduction 140
Steady-state Constant Heat Flow 140
Transient Heat Flow 147
Trañient Thermal Impédance 165
Summary 166
Exercises 168
Problems 168
Laboratory Problems 170
References 172
Chaptar 5 A Free-wheeling Diode DC Motor Drive
Introduction 173
Free-wheeling Diode Circuit 173
Modenim the circuit \#1 - stendy-ateite 1.74
Modeling the Circuit \#? - steady-state 180
Modeling the Circuit \#3 - Steadyristato -182
Modeling the Circuit \# $\# 4^{*}$ - Steady -state 187
The Starting Premsient - Cyclic Iteration 190
The Starting Transient-quasi-steady-state 193
Summary 195
Exercises 196
Problems 197
1Laboratory Problems199
References 200
Appendix 201.
α
i^{2}

Chapter 1. Power Diodes

Chapter Contents

* This ohaptise has three equally important purposes: to acquaint the reader with the circuit properties of power diodes, to review physioal models of a semiconductor p-n function (these models will also be used in discusaing the properties of the thyristor in chapter 3), and to provide some elementary examples of modeling bore the characteristics of the power diode and the properties of some diode circuits.

The chapter begins with a review of the basic conduction properties of single-crystal semiconductors and the electron-hole model. of such a crystal. Next, the electron-hole model of a $p-n$ function and the voltage-current characteristics of a signal diode are reviewed. The voltage-currenti charactieristics of a power diode will then be compared to that of a signal diode, and the differences in the characteristics will be qualitatively explained on the basis of the electron-hole model as applied to the physical construction of the diodes. Some very 'simple diode circuits are then analyzed using circuit models or approximations of the votage-current characteristic of a power diode.

The Electron-Hole Model of a Semiconductor

The semiconductor diode and thyristor are rapidiy replacing gther nonlinear or time varying control elements in the power electronics area. While the semiconductor devices may not replace all other typen of devices such as selenium diodes, high vacuum diode, etc., their Widespread and increasing use justifies the review of some of the basic properties of a crystalline, semiconducting material in ofder to better understand the characteristics of a semiconductor device.

The electrical properties of crystalline germanium and silicon, those semiloonductors most useful in eleotronice at temperatures nearqroom temperatur $\left(23^{\circ} \mathrm{C}\right)$; can be explained in terms of quantum meohanics, statiatical mechanion, and the band theory of sollds. However, the mathematies and details of such a treatment are very cumbersome in explaining the gross electrical charactaristics of these materials. Accordingly, a "semt-classical" model of seficon:ductors built on the nesults of more detailed physical models is frequently used. This model will be referred to as the "electron-hole" model. The bases for this model lie in solid state physics and have sufficient complexity that we choose not to discuss them here. The inqufsitive student may begin to consider the underlying physical processes by examining the references listed at the end of this chapter. It must be realized that by gkipping the "derivation" of the electron-hole model; we generate a blind fpot in our understanding in that we cannot decide from physical principles fhe limitations of our model. For example, with the electron-hole model above, we would conclude that the tunnel diode cannot work. Therefore, the applicabillty of the electron-hole model must be decided on the bases of :
a) the successful-spplication the same model in previous similar situations,i.e., history
b) the results predicted by the model agreelng with experiment, i.e., empirical test ..

Clearly, in any practical situation, empirical test has the last and definitive word.

The Semiconducting Pure Crystal
In a single perfect crystal of germanium or silicon; each-atom is located in a regular array (lattice) composed of all of the atoms that make up the crystal. Of course the idea of a perfect crystal is an idealization because
there will ways be some impurdtes and lettice flaws in the crystal, espeolvally at the surfaces. The crystals used in ey momuctor elegtronicis are 7 wamily or wach purity and sufficientily free of imperfections that these faws are rosponaible for only second orde offects in the crystal characteristics. Germapiam and silicon crystalize in the "dianond structure", a three \because dimenaional array in which each atom is bound to its four nearest meighbors. We.ashall consider a two-dimensional schematic diagram of the three dimensional

Figure 1-1.
Note that each atom shares its four outer shell (chemically active) electrons - with its four nearest' neighbors, thereby effectively completing each atom's outer shell with its preferred number of electrons (eight). This type of shared-electron ponding between atoms is called covalent bonding

If by either some external exciting process or by random chance in the distribution of energy mong the electrons, on electron receives sufficient emergy to break the covalent bond (about 0.7 electron volts for germanium and about 1.1 eV for silicon at rom temperature), the electron is no longer bound but is free to drift within the crystal lattice. When the electron begins to freely drift, it-leeves behind à vacancy in its prevìous covalent bond. other bound electrons of the adjacent atoms may fill this bond, but will leave behind wemeies in the bonds between other nearby atoms.

The vacancy in this model is termed a "hole". As the vacancy is repeatedly filled by bound electrons, the vacancy mays propagate from place to place in the crystal. This process in called "hole drift"". The hole has assoctated with it a positive charge due the net positive charge of the atom of which the hole is a vacancy. Despite the fact that the electron has a negative charge and the hole has a positive charge, the two charge "carriers" do not electrostatically attract each other because aş the hole and electron drift apart, the many other electrons and holes in the crystal readjust their position slightily so that the value of \vec{C} (the electrostatic field strength) throughout the crystal is zero on etren a microscopic (but not atomic) scale. Thus the hole and electron drift independently of éach other. Should an electron and. hole drift together by chance; they will annihilate each other (recombine) with the liberation of an amount of energy equal to the energy originally required to break the çovalent bond.

Define
$n=$ concentration of free electrons
1.e. number of electrons not bound unit volume of crystal
$\mathrm{p}=$ concentration of holes

Thor a cryatal of pure germanium or alilicon

$$
n \mathrm{p}
$$

bebause free deotyons and holes are genérated in pairs.

Pepped Sxmiconductoma

It is possible to make the concentration of free electrons (n) different from the concentration of holes (p) by growing "impure" or doped crystals. If crystals are grown of a mixture of germanium or silicon and a small amount of another element, (impurtity) having five electrons in its outer shell (such as arsenic or phosphorus), a crystal in which n is greater than por "n-type" crystal result's. In such a material, the impurity atom which occupies a normal lattice site now has one electron which is not bound by a covalent bond.

The energy required to free this "extra" electron só that it may drift about in the crystal is only on the order of one hundredth of the energy required to break a covalent bond. At roxm temperature, essentially all of these extra electrons are free. Note that when the electron drifts away from the atom, the atom has a positive charge. But this positive charge cannot drift about like a kole because nearby electrons would have to break a covalent bond (requiring lots more energy) to till this type of a vacancy, and of course, the atom itself.is lpcked in the crystal lattice so that. it cannot drift. In
a homogeneous material, the free eloctrons would distribute themselves in such a way as to cancel the electrostatic field produced by the fixed, ionized impurity atoms. However, in a nontomogeneous material (such as a diode ${ }^{\text {a }}$. Junction) these fixed charges may give rise to macroscopio observable chanacteristics.

It is also possible to add impurities to germanium and silicon crystalà so that the holes will outnumber the free electrons (p-type material). Doping substances such as boron, aluminum, gallium, and indium have only thrae electrons in their outer shell.
$N_{A}=$ CONCENTRATION OF "ACCEFPTOR" IMPURITY IMPURITY ATOM MIS'ING ELECTRON CCAN ACCEPT NEARBY ELECTRON) Figure 1-4

Only "about one-hundredth of the energy "required to break a covalent bond and generate a hole-electron pair is required for a nearby electron to "slip over" and complete the outer shell of the impurity atom. Such an action generates a hole which is now free to drift within the crystal. Again, similar to nc type material, almost all of the impurity atoms have their outer sheils completed at room temperature. Each impurity atom has a flxed negative charge associated with it (due to its. "extra" electron in its outer shell), and in a hömogeneous material; the mobile positive charges (holes) move so as to cancel; out the electrostatic field due to the fixed charges.
$\stackrel{\sim}{\infty}$
Thus we see that. in a doped semiconductor, mobile charges (free-electrons and holes) arise from two sources:
a) broken covalent bands yielding electron-hole pairs,
b) ionized impurity atoms yielding free electrons or holes

- depending on the type of impurity.
suppore we have a matertal that in $n-\operatorname{tanhe}^{\text {due }}$ to doping. The conoentration of electanons (n) will be greater than in the pure matierial due to the fonized tupurity. The inoreaped poputation of free etectrons increases the probabilitiy of a frée-ilectron meeting a.hole and necombining. Therefore the concentration of holies will be keas in an n-torpe doped fratiertal than in the pure material. In fact, statistical mechanics applied tothets problem will give us the result that the concentration of holes times the concentration of electrons is equal to a number which is a function of the absolute temperature

$$
n p=C(W)=K e^{-T g / k!}
$$

$K=$ constant with units of concentration 2
$\mathrm{Eg}=$ energy to create a hole-electron pair
(1.1. eV for $81,0.7 \mathrm{eV}$ for Ge)
$\dot{k}=$ Bolltzmann's constant $^{\circ}$
$T=a b s o l u t e$ temperature
PROVIDED THE SFMTCONDUCTOR IS IN A STATE OF THFRMODYNAMIC EQUILIBRIUM (the. temperature is not changing and no current is flowing).
\because

Sumbiry

- In summary, some of the basic properties of the electron-hole model of a semiconductor are:
a) free-electrons and holes are the MOBTLE CHARGE CARRTERS in a semi conductor
b.) electron-hole pairs may be generated in the material by break-ing covalent bonds (GENERATION)
c) free-electrons and holes may come together in"the crystal and "annihilate each other with the release of energy (RECOMBINATION)
d) sémiconductor crystals may be doped with impurities, yieldina free electrons or holes and FTXED CFARGES in the crystal lattice
e) at room temperatipre, essentially all commonly used impurity atams are ionized
f) In the case of thermodymamic dailibrium, the product of the
\qquad \therefore concentration of holes and electrons is a function of temperature (independent of doping) $n p=C(T)=\mathrm{Ke}^{(\mathrm{Es} / . \mathrm{kT}}$)

Conduction in semicanductrors

We noxt review the basic processes of eleotrical conduction in a sem:conduction orystal. Suppose two copper wires are fastened to an n-type material by some metallurgical proaes. Wo then graph the electrostatic potential as:a function of distance for this device, assuming the wire-semicomactor Junctions are non-rectifying, ohmic contacts.

The difference in electrostatic potential between the copper and the semiconductor is a "contact potential difference" resulting from a difference in the work functions of the two materials. Remember that contact potentials cannot be mqasured with a voltmeter having leads, since the sum of the contact potentials about any loop is zero (otheawise q current would flow, energy. would be disenpated, and the second law of thermodynamics wôuld be violated) We are reassured that the potential difference between the two copper leads (which can be connected to an ordinary voltmeter) is zero:.

Consider the case where the semiconductor with attached wires is connected to a battery.

Tenser ty $\quad 10$

Figure 1-6

If we can neglect the effed ts of the ohmic voltage drops at the junctions, and since the contact potentials cancel, $V \propto F_{b}-I R_{c u}$. Experiment shows that I is proportional to V, or that the semiconducting crystal behaves like a resistor. The characteristic of resistance coupled to the fact that conducetion is by means of electrons prompts us to extend our model in terms of the we tl known model of electrical conduction by electrons in metals.

To construct a model for a resistor using electron conduction, we reason thus:
a) The current must be proportional to the number of charge carriers, and their velocity.
b) Therefore the application of a voltage to the crystal must change the velocity of the charge carriers, change the number of charge carriers, or : result in some combination of the two possible effects.
c) We turn to the theoretical analyses and experimental work of others and accept as fact in our model that:

As the voltage applied to the crystal increases, current at first increases proportional to voltages This phenomenon is due to the speed
of the arriens being proportionst to the applied voltage (actually, proportion to the electric field strength). If the magnitude of the voitaee is increased qufficiently; the curfent will increase abruptiy with small increases in voltage in vexy nonínear way. This effect (avalanch) is ascribed to the increage. In the number of charge carriers.
d) Consider the case where I is proportional to V. We must have the charge velocity increase proportional to the applied talue of \mathcal{E} (or Vylength in a homogeneous crystal). We rationalize by saying each carrler is acted upon by a force $\vec{F}=q \vec{E}$ where $\dot{\mathcal{Q}}$ is the value of the electronic charge. If. the charge carrier is an electron, $q=-1.6 \times 10^{-19}$ coulomb. This force accelerates the carrier which soon bumps into the atoms composing the crystal. These collisions change the direction of motion, so that on the average, the carrier has a "drift velocity". or component of velocity" in the direotion of the applied field that averages to be proportional to the pagnitude of the applied field ${ }^{2}$ carriers as electrons). The two equations result from the convention that μ is "always posftive. Also, $\mu_{n} \neq \mu_{p}$ because the mechanism of conduction of holes is different than the mechanism of conduction of electrons.
e) Consider a. "filament" of unit cross sectional area of the crystal... (

The number of electrons crossing this area per unit time (flux of eleatrons due to the battery being connected) is equal to the average alectron drift velocity multiplied by the number of electrons per unit volump of the crystal. Of course, this gives the flux density. If the total flux of electrons were desired, one would simply integrate the flux density of er the total crystal area.

$$
\overrightarrow{\mathcal{F}}=\text { electron flux density }=\stackrel{\rightharpoonup}{v} n
$$

The current is the transport of charge per unit time, and is simply the charge of an electron multiplied by the number of charges crossing the area per unit time. Again, since we are working in a small filament of unit area, we'are calculating the current density due to electron drift

$$
\begin{aligned}
\stackrel{\rightharpoonup}{J}_{n} & =-q n \stackrel{\rightharpoonup}{v} \\
\text { Recáall that } \stackrel{\rightharpoonup}{v} & =-\mu_{n} \vec{C} \text { and eliminating } v
\end{aligned}
$$

$$
\vec{J}_{n}=+q u_{n} \overrightarrow{\boldsymbol{C}},
$$

which is ohm's law at a point

$$
\stackrel{J}{n}=\sigma \vec{E}
$$

$$
\sigma^{2}=\text { conductivity }
$$

or

$$
\begin{aligned}
& \text { and } \\
& S=\frac{1}{q \mu_{n}}
\end{aligned}
$$

To find the resistance of the crystal; we need only multiply by the length and divide by the total area, or

$$
\text { Resistance }=\frac{B}{A}
$$

f) Similarly, in a p "type material where p is orders of magnitude larger than n, and conduction is by means of holes.

$$
\dot{\jmath}_{p}=q \mu_{p} p \overrightarrow{\mathcal{E}} \text { and } \rho=\frac{1}{q \mu_{p}^{\prime} p} .
$$

 bor bot ar type of cerriciers is signtificenit and:

$$
\begin{aligned}
& \vec{J}_{\text {total }}=\vec{J}_{n}+\overrightarrow{v_{n}} \\
& =q\left(\mu_{p}+\mu_{n}\right) \vec{E} \\
& \text { or } S=q\left(\frac{\mu_{p} p+\mu_{n}}{p}\right)
\end{aligned}
$$

\square
In brief summary:
*) the voltage-curnent characteristic of a homogeneous semiconducting crystal are the same as that of a resistor (it's functions that cause the non-: linearities),
b) there are both positive (holes) and negative (free electrons) charge carriers in a semiconductor. These carriers drift under the influence of an ' \vec{E}-- field, producing a current,
c) the resistivity of a semiconductor is a function of the concentration of the charge carriers.

It is possible for currents in semiconductors to arise from diffusion proceases in addition to the drift current previously considered. Diffusion arises in nonhomogeneous cases. Suppose that a number of electrons were "injected" by same unknown process into a semiconducting crystal, analogous to crap of ink belting injected into a bowl of water. In time', the high concentration " of electrons (ow ink) would decrease as the particles diffused. away from the original location due to the fact that the particles are freely dotting, possess random motions, and have a high probability of moving in directions other than m together. The eventual dispersion of the electrons or fie droplet represents a current or flux of the particles away from their (signal location. The diffusion of particles is described by Pick's Law wist ch states that:
the net flux of particles is related to the gradient of the concentretron N by a constant

$$
\vec{F}=-D \operatorname{grad} N \text { or }=-\overrightarrow{-D} \overrightarrow{\nabla N}
$$

where D is the diffusion constant. In one dimension

$$
\mathcal{F}=-D \frac{d N}{d x}
$$

For electrons

$$
q=1.6 \times 10^{-19} \text { coulombs }
$$

For holes

$$
\vec{J}_{p}=-q D_{p} \dot{\overrightarrow{\nabla p}}
$$

Again, $D_{n} \neq D_{p}$ due to the different processes in the motion of holes or electron. As a small point onside, it' can be shown that s

$$
\frac{D}{\tilde{u}}=\frac{k T}{q} \because \because \quad \because \text { Einstein relation }
$$

Diffusion currents are important near the junction of a diode.
Combining the drift and diffusion currents, the total current consists of four parts

$$
\vec{J}_{\text {total }}=\underset{\text { electron }}{\stackrel{\rightharpoonup}{J}}+\overrightarrow{\text { drift }}_{J_{\text {hole }}}^{\text {drift }}+\stackrel{\rightharpoonup}{\text { electron }}_{\text {diffusion }}^{J_{\text {hole }}}+\overrightarrow{\text { diffusion }}
$$

and I, the total current (steady state neglecting displacement currents)

$$
I=\int_{A} \vec{J} d A=I_{\text {electron }}+\underset{\text { drift }}{I_{\text {hole }}}+\underset{\text { drift }}{I_{\text {electron }}+I_{\text {hole }} .} \text { diff }
$$

I must be the same in any plane at any place in the semiconductor or its leads by Kirchoff's current law, $\sum^{j} I=0$. However, the relative importance or manidudes of the four components may vary from place to place in the semiconductor due to either nonhomegenuities in the crystal or in the concentrations of holes and electrons when $_{\text {, }}$ the crystal.

The Ideal Dlade

Consider a single crystal of germanium or silioon in which the doping varies with distance in such a way as to produoe both an n and a p type material in the same erystal.

Figure 1"n- 8
The region where the material changes from p to n-type is cailed the "junction" -or transition region. Clearly, the crystal is not homogeneous in the junction regioh. Next, consider the crystal as lying isolated, not connected to any energy spurce, and in the thermodynamic equilibrium with its surrqundings. Far from the junction region (on the orter of a few thousandths of an inch), $p=N_{A}$ In the p-type material and $n=N_{D}$ in the n-type material. Because $n p=C$, a constant,nis determined in the petype material (and will be several orders of magnitude less than p in the p-type material) and p will be determined in the n -type material (and will be several orders of magnitude less than n in the n type material).

Figure $1-\ddot{9}$

There is an orders of magniturde change in the concentrations of electrons and holes in the function region. "The large variation in the concentrations of" the chorge carriers gives rise to diffusion currents. Holes diffuse from the p-type material to the r-type material, and electrons diffuse from the n-type material to the p-type material. "The transport of holes and electrons is a diffusion current ($I_{d i f f}$) from the p-type material to the n-type material. The carrier concentrations never equalize across the junction, that is, the difa fusion current is mot a trapsient phenomenon. : A hole, crossing the junction from the p to the n-type material finds itself in a 'region where there are many electrons. The probability of the hole recombining with an electron drastically increases. The rasult is that practically all the carriers that diffuse across the function recombine. Holes are resupplied to the putype material at its ohmic contact by a fairly complicated process we choose not to describe at present, and by a drift process about to be described. A similar argument holids for electrons.

Thus forn, a dirfuston current from the p to the n-type material has been Tumantitimetiony described: Yet, the totall current musti be zero, since the cryataly is electrically isolated. Therefore arift current muat exist that emactly cancelis the diffurion ourrent.

$$
I=01=I_{\text {dutif }} \hbar I_{\text {draft }}
$$

We next consider the source of the \vec{E} field that "drives" the drift current. Ait the junction region, the concentration of holes in the putype material is decreased (refer to Fig. 1-9) below \mathbb{N}_{A} due to the high rate of diffusion of holes away from that location. Since the ionized acceptor atoms have a negative charge, and the atoms are fixed in the crystal lattice, there is a negative charge density located in the p-type material near the junction. Similarly on the n-type side of the function, the electron density is lowered and the fixed charge due to ${ }^{N}$ D causes a positive charge density* to result in the n-type region. The charge densities and concentrations are shown in Figure 1-1.0 on a linear scale (recall that fig. 1-9 has a logarithmic carrier density scale).

Figure 1 - 10

The charge densities due to the flxed charges give rise to an electrostatic field which causes electron to drift toward the motype material and noles to urift towand the p-type material. Because the electroftatic fleld avions mobile charges out of the junction region, the concentration of mobile whe riers iss small compared to aitarier concontrations in the bulk of the p and $n-\alpha$ type materials. The region of low concentration of mobile carriers is known as the "depletion region" or "depletion layer."

Next we choose to calculate the electrostatic potential that exists across the depletion region. pirst we apply Gauss', Law $\frac{1}{\epsilon} \int_{V} \rho d V=\int_{A} \vec{E} \cdot d \vec{A} \quad \therefore \quad$. Then sifice $-\int \hat{E} \cdot d \vec{\pi}=\psi_{A B}$, we can find the potential difference that exists across the junction, To simplify the calculation, we make the justiftable assumption (for the desired accuracy of our qualitative analysis) that the charge density is a constant in the p-type region and a different constant in the n-type region (dashed, lines, Fig. $1-10 \mathrm{c}$), thus neglecting the getails of the edges of the depletion region.

Consider a filament one unit on a side within the crystal (so we can consider densities irrespective of the crystal dimensions)". Because of the axiál symmetry, only variations in the x diraction (along the length of the filament)

[^0]need befconsidered and we have only to analyze a one dimensional problem. Starting at x A(Flg. 1-11) in the p-type material and working toward the nutype material, at first no charge is enclosed in the gaussian surface, then a constant charge density is encountered and $\int \rho \mathrm{d} v=\rho A x+C$ (unit Area so

Figure 1-11

The fialid is a Iincher funotion of dirtance (x), and the potential is apara-
 ad m-tyge materiale ls the oontact pobential between these dissimilar materials. Aldo. the area of the charge density versus distance for the p-type material
 for the n-type material. otherwise an \mathcal{E}-fleld would exist outside the depletion region causing electron drift far from the function which does not agree With observed facts or our model if pursued with sufficient detail.

Next consider a battery applied to the device. We have seen that in the case of zero current through the device, the current is made up of a diffusion and a drift component that cancel or balance each other. Applying an external voltage source will upset the balance and a net current will flow. If we can essume that essentially all of any voltage applied to the device appears across the function, the analysis is greatly simplified. Such an assumption is usually - Justified in signal type diodes because the distance between the function and ohmic contacts is small, the current density sufficiently dow, and the resistivity of the material is sufficiently small that the bulk of the semicondudtor materials far from the transition region has a negligible effect on the electrical characteristics of the device.
6. Figure l-i2 shows the differences in junction charge, \mathcal{E}-field, and potential between the ases of zero current (zeio applied voltage) and forward conduction (forward voltage bias). The depletion layer changes its length dependent on the applied voltage. The forward blas voltage E_{b} reduces the drift component of current in the junction region because \mathcal{E}_{*} is reduced. The charge distributions in the copper-semiconductor junctions are simple inventions to make the contact potentials cancel around the loop when F_{b} is zero. Whe physical \int details of the metal-semiconductor junctions are outside the scope of the preMent course. We have adopted the following commonly used assumptions:

Figure 1-12
m) I-R drope in the wizes and the on and p-type materlale outelde the
 mesponible for arift ourronts outidde the yunction regton (in the wire Sor exatiple) but do not significantily oontribut to the grose I-V characterimition of the device.
b) The metal rsomionductor contact potential differences do not "slignif-- icantly change as a function of current. Note that these patential drops are not insigniflcant compared to $\psi_{A B}$, but if they are not a function of current, the change in $\psi_{A B}$ due to the oonnection of a battery is approximately equal to the battery voltage.

The charge, field, and potential distribution in the diode under reverse bias conditions are shown in Figure 1-13.

Ais the newarse volture ts inareased, the length of the depletion region threnemeres and tho meaphitude of the filiedd streniatib (n) within the depletion negion incneases: The drift ournent. (from the n to the p-type materlal) should innrease and the dffusion current (from p to n-type material.) shopld

Consider whether or not is is poseible for the drift current to exceed the previously discussed diffusion currents Although the situation is confusing at small reverse bias (because the diffusign and mobility constants for holes and electrons are different) the model is easily understood at large reverse bias. The drift current in the junction region arises flom the drifting under the influence of the $\overrightarrow{\mathcal{E}}$-field of mobile carriers that have diffused into the junction area. At large 'reverse bias', all of the holes that diffuse into the junction region from the p-type material and all of the free electrons that diffuse into the junction region from the n-type material are turned back by the high field. Thus it would seem the drift current cannot excead: the diffusion current, and the net current should be zero for reverse bias.

We have neglected an important fact. In considering the cases of forward and zero bias, the concentration of carriers in the junction region exceeded the concentration of minority carriers (p in the n-type material and n in the p-type materisili) \}adis shown: in Flgure 1-9. For large reverse blas, the concentration of mobile: carriers in the junction is further reduced (Fig. 1-14) due to tha large $\overrightarrow{\mathcal{E}}$-field in the junction region.

The concentration of moble carriers in the junction region becomes so small that the minority carriers also diffuse into the junction region (here labeled "back diffusion"). The minority carriers are of sych polarity as to be carried by the drift the remaining way across the function, giving rise to a reverse current.

$\mathrm{I}_{\text {reverse }}$	$=$	$I_{\text {diff. forward }}$ electrons	+	$I_{\text {diff. }}$ forward holes
\cdots		$I_{\text {diff. back }}$ electrons	+	$\begin{gathered} I_{\text {diff. back }} \\ \text { holes } \end{gathered}$
*	$+$	$\begin{aligned} & I_{\text {drift }} \\ & \text { electrons } \end{aligned}$	+	$\begin{gathered} I_{\text {drift }} \\ \text { holes } \end{gathered}$

Because the concentration of minority carriers is orders of magnitude less than the concentration of majority carriers, fe expect that the reverse current should be orders of magnitude smaller than the forward current for the same,

1 magnitude of forward and reverse voltage bias applied to the device terminals. Alsoy changing the magnitude of the revernerblas volitage under conditions of lamga reverge bias should not change the magnitude of the revexge current, since the current is limited by "back diffusion" and the voltage change does nots have much eifeat on the concentration:graident ats the: edges of the Junotion region. These predictions are correct. Careful application of the electron-hole model of the junction plus some application of statistical mechanics would allow us to derive the ideal diode equation which is good approximation to the $V-I$ characteristics of a signal diode over itis normal operating range.

The ideal diode equation is a valid approximation to the $V=I$ characteristic of any diode provided:
*a) ohmic drops are negligiole
b) most of the current is conducted through the junction rather than at the"surface of the crystal ("Leakage currents" around the junction are caused by contaminants and imperfections in the arystal lattice which of ten exists at the surface of the crystal).
c) "normal" diffusion-drift processes account for the carrier transport across the Junction.

Notice the ideal diode equation is not a good approximation for voltages near tne value of the breakdown voltage $\left(\mathrm{V}_{\mathrm{B}}\right)$ for the diode ("avalanch" region Fig. 1-15). The avalanch region occurs (from the point of view of our model) when the reverse bias voltage becomes so large, and the magnitude of the \mathcal{E}-field so large, that mobile carriers gain so much kinetic energy between collisions that they can break covalent bonds in the Junction region (refer to Fig.:1-13). When a carrier (hole or electron) breaks a covalent bond, two additional carriers result which are also accelerated by the \vec{E} field and break more covalent bonds. This process is known as the "avalanch process" and is responsible for drastically increasing the concentration of mobile carriers of the junction region, resulting in a sharp increase in current. "Current in the avalanch ,region is frequently approximated by the relation.

$$
I=I_{0} \frac{1}{1-\left(V / V_{8}^{n}\right.} \quad n \text { varies between } 2 \text { and } 4 \text { depending }
$$ The avalanch equation is an empirical relation, fitted to the V-I curve in the avalanch region. The avalanch equation has not been derived from fundamental. crystal properties.

While avalanch is not necessarily destructive to the diode, unless the dioda has been specifically constructed to work in the avalanch region, excessive reverse voltage and subsequent avalanch leads to diode failure. The large simultaneous current and voltage in the avalanch region means that the device is dissipating energy at a rate far exceeding the rate of dissipation in the ideal diode region. Unless some special circuit or construction provision has been made, the temperature at the junction may rise above the melting point of the crystal. When the crystal (or some small area of the junction) melts, it
loses its rectifying properties. Even if the turrent is interrupted bofore the leads or crystal vaporyzes, the device has been ruined because the rectifying properties do not refppear upon cooling. The moliten soction does not recrystalitize with the ssme structure that extsted before melting, and the device exhibits propevties similar to that of a resistor after cooling.

Briefly considering the transient behaviour of the diode, there are two predominant phenomena. The fixed charges in the depletion layer act as a stored charge; dependent on terminal voltage, similar to the stored charge on a parallel plate capacitor. Thus the depletion layer acts as a capacitor whose value depends on the applled voltage. Similar devices are used for high frequency tuning circuits (varactor diodes)." For signal diodes, the capacitance value ls usually on the ordor of some tens of picofarods. Also, when the voltage across the junction changes, the length of the depletion region changes, and therefore the distribution of mobile charge carriers changes. During the time the distribution of mobile carriers is changing toward a now steady-stati, the motion of the carriers gives rise to currents. Because these currents are assoolated with the presence or absence of moblie carriers near the junction (i.e. "storage" of carriers) the effects of these charges can be associated with another capacitance (in addition to the depletion capacitance) which is both time and voltage varying.
, Summarizing:
a) There is a balance of diffusion currents across a p-n junction,
b) The fixed charge densitics in the depletion rogion are approximately equal to the doping densities,
c) The fixed charge densities in the depletion region are directly related (through (anuss', raw) to the valuo of $\overrightarrow{\mathcal{E}}$ in the jumetion roglon and the terminal vol.tage across the device,
 to the charaoteristics of a aignal diode provided:

1) ohmic dropa are negligible,:
2) there is negligible "leakage current,"
3) the voltage is below the breakdown voltage.
e) Avalanching is related to value of the field in the junction region and hence to V_{B},
f) There are voltage dependent and time varying capacitances associated with the p-n Junction.

Powar pioden

"The two most prominant ratings for a power diode are the maximum or peak revere roltage the diode can maintain short of avalanch; and the maximum steady istate forward current. Because the cost of a diode increases for limcreasing peak reverse voltage for cohstant forward current rating, and the cost increases for increasing forward current rating for constant peak reverse voltage rating; and also because the power dissipated in a diode increases as the current rating increases, diodes are normally chosen to operate near their maximum ratings. Any "safety factor" applied to the ratings will depend on the specific raracteristics of the circuit in which the diode is to be used and the quality control of the manufacturer of the diode.

Except for any required safety factor, a diode will normally be operated at the maximum voltages and steady state current the device can tolerate. Therefore, the assumptions made in the case of signal diodes must be reexamined for the case of power diodes.
a.) I-R drops

If the forward current is the maximum possible steady state value, the current density in the crystal is also as high as passible. The current and current density are limited by the maximum allowable Junction temperature specified by the manufacturer such that long term degradation of the diode does not result (about $1.90^{\circ} \mathrm{C}$ for s_{i}) because diode temperature is in part a function of forward current. The large current density gives rise to nonrnegligible (compared to the total forward voltage across the diode) voltage drops across the p and n-type semiconfuctor material outside the junction region, and across the metal-semiconductor junctions. Furthermore, because
of the high concentration of mobile carriers diffusing across the Junction, the concentration of mobile carriers in the orystal far from the junction in increased. The higher than thermodynamic equilibrium concentrabion of carriors outside the junction area reduces the resistivity of the crystal ("conductivity modulation"). Thus "the aiode "ohmic drops" which cannot be neglected at high currents vary as a function of current in a nonlinear way.
b) Leakage currents

Surface leakage currents around the function are not negligible" compared to I_{o} in high power diodes. The leakage currents become significant compared to I_{o} in power diodes due to the large fields at the junction when the diode is operated at maximum reverse voltage, the increased circumference of the leakage path-of larger diodes, and because of differences in the geometry of signal and power diodes arising from the need to dissipate more heat and pass larger currents in power diodes.
The steady state equivalent circuit of a powér diode would look like: LEAKAGE

In addition to the leakage and " $I R$ " resistances, I_{0} is larger in power diodes than in signal diodes because the junction area increases as the current rating increases (keeping current density about the same), and I_{0} is proportional to the junction area. I_{0} plus the leakage current is frequently specified by the manufacturer for peak reverse current and maximum temperature. A typical specification might be:

783

 only limit on transient forward current is the melting or fusings of the diode or its leads. Therefore, a current and a time corresponding to a commonly used waveform" (usuaily a $60 \dot{H}_{z}$ sine wave) is specified as a transienty surge limit. - 4

The power diode transient behavior depends not only on the conductivity modulation effect, but on the diode capacitance (voltage and time varying) which increases roughly proportional to the function area and therefore also propurtional to the current rating. It is instructive to consider a square wave voltage transient applied to a diode-resistor circuit (flg, 1-16).

time pertiod

1
$t,=0$

2
$t=t r$
$3 \& 4$

Reverse bias yoltage E has been applied for a long time. A stidady ntate reverse eurrent $I_{0}+x$ leakage filows.

The voltage:applided to the ofrault suddenly reverses polarity.

Current rises as the now mobile carrier diftribution comes to steady-state and the resistivity of the crystal far from the function decreages due to the high level of minority carrier concentration. Note that it is nonsensical to talk about the "resistance" of the diode.

The steady state in the forward bias condition has been achieved.

The applied voltage polarity again reverses. Because the voltage across the depletion layer cannot change instantaneously due to the depletion capacitance, a curient greater than the steadystate forward current may resul.t.

Carriers are being swept out of the new depletion region and the bulk of the crystal. The motion of the "extra" mobile charges (existing yet from the forward bias condition) causes currents to flow until the excess carriers are recombined and a. new steady state is reached. "The division between region 3 and 4 is arbitrarily set. Time period 3 is called the "storage time", and perisists from the time the voltage V is
reversed until the current has deoreased to 90 per oent of 1 ta peile reverse value (in aceordance with standard definitions regarding pulse weverorms): The taady atate reverse-bias conditions are renohed "late" in pepisod 4.

In summary, the differences betweeh power and signal diodes are reasonably predictable in terms of the eloctron-hole model given the fact that power diodes opprate at near maximum possible steady-gtate current densities and peak reverse voltages. Power diodes have signiflcant "ohmirc" IR draps which are conductivity modulated. Leikage currents are gignificant compared to I_{0} at maximum reverse voltages. I_{0} and the diode capacitance increase as the current raiting ard junctatm areantincragies. Finally, it is necessary to bear in mind that the "capacitances" and ohmic "resistances" are current, time, and vol.tage dependent and are not easily represented in an equivalent eircuit.

Diodes in Serles and parallel

Sometimes it ís desired to use somiconductor diodes in circuits whore the voltages and currents are outgide the rating range of comercially avallableidiodes. In such cases, diodes may be connected in series to increase the voltage rating of the roctifier and/or parallel to increase the current handling capability of the rectifier.

Consider two diodes (same rating, same type number) connected in series. The T. V characteristics of the two diodes will generally not be identical: In the forward direction, both diodes conduct the same amount of current, and - some small different voltage appears across aach diode. Clearly the current, \quad. rating of the diode pair is the same as the current rating of one of the diodes. In the reverse direction, the same current flows in each diode, and each diode supports a different reverse voltage. . The ratio of the voltages across the diodes will depend on how similar the diode characteristics are, as shown in Figure 1-1.7. The voltage rating of the diode paix must be larger than thg rating of one diode, because part of" the total applied voltage will appear acoss the other diode. However, the voltage rating of the diode pair must be less than twice the voltage rating of a single diode because the voltages do not divide evenly.

Note: The direction of $V_{D 1}, V_{D 2}$ and I_{D} are chosen to agree with the con yentional way of expressing the I-V characteristics of a diode and the ideal junction diode equation $I=I_{0}\left(e^{q V D / k T}-1\right)$.
? Figure 1-17
Tqus the series connection of diodes requires either careful matching of the diode I-V characteristics or some additional circuitry to make the voltage divide more evenly. A simple and cormonly used solution to this problem is to connect áresistor across each diode. Although a different value of resistor. could be placed across each diode to achieve some optimum voltage division, a" more practical approach is to place the same value of resistor across each diode, eliminating the problem of matching resistor values to individual diode characteristics, and making replacement of defective units simple. Figure 1.-18. shows the effect of placing resistors across the diodes of Figure 1-17.

$$
\begin{gathered}
V_{D 1}+V_{D 2}+E_{b}=0 \\
I=I_{A_{1}}+I_{D 1}=I_{R_{2}}+I_{D 2}
\end{gathered}
$$

Figure 1-18

In addition to the steady state voltage diatribution along a string of series-Connected diodes, some provision must usually be made for transient voltage changes. Such transients might be caused by switching loads, lightning, or the initial application of voltage to the diode circuit, Assume a voltage transient of such a polarity as to increase the reverse bias is applied to a seriel string of diodes. At first, all of the diodes pass a changing current which depends upon the transient amplitude, the fircuit load, and to some extent, the diodes. The change in current. is relatively independent of the diodes due to junction capacitance and carrier storage effects which allow. large currents to flow until a new steady-state distribution of carriers is achieved in the diode. Because of minute differences among the diodes, some diodes will approach ánew steady-statédistribution of carriers before other diodes. These "faster acting" diodes in the string then attempt to control and block the current associated with the voltage transient. Thus the "faster acting" diodes will receive, reverse voltages greater than their fair share (the total applied voltage divided by the number of diodes). The voltage across one of the"faster acting" diodes may well exceed the peak reverse voltage rating of the diode and cause the diode to fail. If the diode fails by "shorting out", a common occurrence, the voltage on the other diodes of the string increases causing other diodes to fail until something fuses, disrupting the current. .

Diode strings are commonly protected from voltage transients by shunting a capacitor around each diode (Figure 1-19). The capacitors can be thought of as bypassing abrupt voltage transients around the diode string, dividing the voltage transient equally among the diodes by a capacitance divider action, and limiting the rate of change' of voltage across" the "fact acting" diodes.

The mignitude of expected transients must be estimated in order to choose the capact tor vodtage rating as well as the PRV of the diodes, and the entira circult must be considered in choosing the value of capacitance necessary to limit the rate of change of voltage across the fastest acting diode.

9

Figure 1-19

Diodes are frequently paralleled (Fig. l.-20) to achieve higher current capabilities than present ratings of sangle commerical diodes would permit. A sma. 11 resistance is sometimes placed in series wheach diode to assure the even division of the steady state current. Transient phenomena are noty as important in the case of parallel diodes as in the case of series diodes. Fach of the diodes can withstand the peak reverse voltage, and since aach diode can withstand large transient surge currents, the transient case where some diodes conduct better than others is usually not of practical importance.

Modeling aisimple Diode Circuit

We next consider in some prtail the analysis af a simple circuit that includes a diodt. The emphasis in the analysis will be on the process of modeling a simplified circuit to approximate the real, physical circuit. In engineering, a rigonous solution of a problem in all possible detail and exactitude is never desired. The most elementary real problems would take months or would be unsolvable if the ultimate in accuracy and physical reasoning were required, where even conduction in a copper wire poses formidable problems of quantum mechanics, heat flow, surface phenomena, insulation properties, etc. The degree to which a reăl interconnection of electrical deviles may be simplified (modeled) depends on the question the analysis hopes to answer. Also, since and approximate answer is desired rather than "THE TRUTH," it may be perfectly reasonable as well as desirable to change assumptions, simpliffeations, and models in the middle of problem as illustrated by the following problem.

A 1 N4590 diode is connected in serices with a 2.4 ohm resistor and a 240 volt, 60 Hz source (Figure 1-2l). It is given that:
(a) the internal impedance of the source is much less than 2.4 ohms,
(b) the resistor behaves as a pure resistance at 60 Hz (has negligible distributed inductance and capacitance),
(c) and the connecting wires and their physical connections have resistances negligibly mall comparod with 2.452.

Question: How much power 1 s dissipated by the diode? We want to choose an appropriation heat-sink on which to mount the diode.

Solution: The fact that the answer is to be used to choose a heat sink gives us some idea of the accuracy of the solution that will be required. Certainly an error of a factor of 2 would be too large, causing a severe "overdesign" in the choice of the heat sink. Similarly, provided some exotic application such as a space-satellite requiring a careful dissipation budget is not contemplated, a calculation to within 1% would be ridiculously accurate for the problem. The desired accuracy will depend on the cost of the heatsink as a function of its cooling power, but a first-shot aim at an accuracy of $10-20 \%$ does not seem unreasonable.

In forming a plan of attack of the problem, we notice that neither the voltage across nor the current through the diode is sinusoidal. Therefore, the power dissipated will not be

$$
P=V_{\text {Drms }} I_{\text {rms }} \cos \theta
$$

which is valid only for sinusoidal waveforms. We must go back to the fundmental definition of electrical power, which is

$$
P=\frac{1}{T} \int_{0}^{T} e i d t
$$

$$
\begin{aligned}
\text { where } e & =\text { voltage between terminals } \times V_{D} \\
i & =\text { current } \\
Y & =\text { time duration of one cycle } \\
Y & =\text { power dissipated in the device }
\end{aligned}
$$

Recall that by a simple change of variable,

$$
\theta=\omega t \text { where } T \text { corresponds }
$$

to $\theta=2 \pi$ and ω is the angular frequency, yields the equally valid power formula

$$
P=\frac{1}{2 \pi} \int_{0}^{2 \pi} e i d \theta
$$

Thus to bolve the problim, we must find the voliage across the diode and the cumant through thie diode as functions of time or multiply the two * Thunctions together, and integrate over one cycle.

An examination of a manuracturer's data sheet concerning a lN4590 diode Vlelds the followng thata and apeciflcations:

Nax repetitive peak reverse volts $\quad, \quad-400$ volts Max pqaki reverse volts for one half wave, 60 Hz sinusoidal. pulse, -525 vollts 400 voltes Max allowable blocking direct-voltage $\stackrel{3}{3}$ Mar average reverse cunrent at PRV (repetitive), 150A forward current, junction temperature at $110^{\circ} \mathrm{C}$

Max forward voltage drop; 150 amps , average current, $1.10^{\circ} \mathrm{C}$
Junctifon temp
Max forward full cycle average current
Max $1 / 2$ cycle, 60 Hz , peak surge currents
(Westinghouse data sheet 54-166)

First we note that no data are given concerning junction capacitance and carrier storage times. Since 60 Hz is mentioned in the given specifica-. tions, and the circuit we are considering does not seem to be an "exotic" application of a diode, a reasonable inference is that the diode capacitive effects are not significant on a time scale of $60 \mathrm{~Hz}(\sim 17 \mathrm{~m} \mathrm{sec})$. Although We could search further for information from people experienced in working such problems, the manufacturer; or advanced texts and publications; we choose here to assume that such capacitartes will be negligible (on the hint that no specifications or data are mentioned on the data sheet) subject l,o laboratory verification.". We shall have tof calculate voltage and current waveforms to solve the problem anyway, whalk set up an experiment (after the calculation ashows us what should be examined, and if the observed waveforms drastically
differ from the calculated waveform in such a way that could be attributed ta diode capacitances, we shall have to "sophia, cate" our calculations. We do not have the V-I characteristic of the diode. We covid request additional information from a manufacturer, (We would receive families of H-I characteristics as functions of temperature. We might- also receive tolerances for the V-I characteristics.) However, we may be able to arrive at, some reasonable conclusions using our knowledge of the diode invgeneral and the given diode specifications.
" Consider the half' eycle in which the diode is forward biased and conducting.' A maximum voltage of 1.35 v appears across the diode which is small compared to the source voltage $240 \sqrt{2}$. Therefore, to a reasonably, good approximation, the diode voltage is negligible and $I=\frac{V}{R}$

$$
I=100^{\circ} \sqrt{2} \sin \omega t \text { from } \omega t=0^{\circ} \text { to } \omega t=180^{\circ}
$$

During the next half cycle, the maximum reverse current is 9 mA . IR can be at most $.009 \times 2.4$ volts which is small compared to $240 \sqrt{2}$ volts. . Therefore the diode voltage will approximately equal the source voltage for the half
 cycle the diode is reverse biased.

$$
V_{0}=240 \sqrt{2} \sin \omega t
$$

$$
\omega t=180^{\circ} \text { to } \omega t=360^{\circ}
$$

Now if we can make some reasonable approximations about the forward voltage drop (with our known forward current) and the reverse current (with known. reverse voltage) waveforms, we shall be able to calculate the power dissipated in the diode. However, we note a glaring logical inconsistency. Our perfectly valid approximations concerning negligible forward voltage drop and negligible reverse current are equivalent to replacing the diode by an ideal switch (Fig. 1 - 22).

The switch is a lossless element, and we now propose to calculate the power lost in the switch: of course, the argument is hot inconsistent: provided we distinguish between negligible quantities and zero. The principle is emphasized by considering a trivial problem.

Digression
Consider a Simple series circuit consisting of an $A-C$ source,

Figure 1. -23
What is the circuit current, and what power is dissipated in the circuit?

This simple problem can be workea"by inspection to better ${ }^{\text {a }}$ than 1% accuracy, if one realizes that the 1 ohm resistor imperance is negligible compared to the 100 ohm inductor impedance

$$
I \simeq \frac{100 \text { volts }}{100 \text { ohms }}=1 \mathrm{amp}
$$

$$
P=I^{2} R \simeq 1 \text { watt }
$$

Despite the fact that the resistor has negligible effect on . determining the circuit current and can be neglected in determining I, the resistance is not zero and determines the power
${ }_{-}$Next we conslder plausible asoumptions we might make regarding forwand voltage and reverse current. From the review of a diode, we know that as the forward current increases, the forward voltage, at first rises rapidly and then more slowly according to $I=I_{0}\left(e^{q V / k T}-1\right)$, and continues to rise faister than the deal formula would predict due to bulk resistance effects. A sketch' of "the forward voltage might look like:

Figure 1 - 24
V_{D} might not reach the maximum value of 1.35 volts due to variations in diodes and since the maximum current is not being drawn. 'However, we include a small safety factor in the calculation and assume that 1.35 volts will be the peak forward voltage. Our knowledge of the diode characteristic tells us thiat the voltage will be near the peak+value throughout most of the cycle. Since we are calculating $\int_{V_{D}} \dot{I} d \theta$, we also note that the value of

49:
$\nabla_{D ~ n e a r ~} 0^{\circ}$ and 180° will be less' important than near 90° since T will be small at 0°, and 180°. Wherefore a reasonable approximate on that would greatly simplify the problem and would still seem to provide reasonable accuracy would be to assume $V_{D} *$ constant $m 1,32$ volts for $0^{\circ}<\theta<180^{\circ}$. Arbors in such an assumption would be more sensitive to a poor choice of V_{D} max than to the waveshapes near the beginning and end of the half cycle. Similar arguments involving the leakage resistance of the diode apply for the reverse current (Fig. l -25), and we approximate the reverse current $I_{0}=$ constant $=-9 \mathrm{mAt}$

$-I \forall$
Figure 1-25

We now perform the integration, breaking the integral into two parts.

$$
\begin{aligned}
& P=\frac{1}{2 \pi} \int_{0}^{2 \pi} V_{D} I d \theta=\frac{1}{2 \pi}\left[\int_{0}^{\pi} V_{D} I d \theta+\int_{\pi}^{2 \pi} V_{D} I d \theta\right] \\
& P= \\
& \quad \frac{1}{2 \pi}\left[\int_{0}^{\pi}(1.35)(100 \sqrt{2}) \sin \theta d \theta\right. \\
& \left.\quad+\int_{\pi}^{2 \pi}(-0.009)(240 \sqrt{2}) \sin \theta d \theta\right]
\end{aligned}
$$

$$
\begin{aligned}
& p=\frac{1}{2 \pi}\left[135 \sqrt{2} \int_{0}^{\pi} \sin \theta d \theta-2.16 \sqrt{2} \int_{\pi}^{2 \pi} \sin \theta d \theta\right. \\
& p=\frac{1}{2 \pi}\left[1 3 5 \sqrt { 2 } \left(-\left.\cos \theta\right|_{0} ^{\pi}-2.16\left(-\left.\cos \theta\right|_{\pi} ^{2 \pi}\right]\right.\right.
\end{aligned}
$$

Note that we can neglect the power dissipated in the $180^{\circ}<\theta<360^{\circ}$ half aycle compared to the power dissipated in the. 0° to s 180° half cycle, Thus most of the power is dissipated when the diode is forward biased.

$$
\rho \simeq \frac{135 \sqrt{2}(2)}{2 \pi}=61 \text { wat as }
$$

Although the approximations we have made seem reasonably, we have dot used the actual diode characteristic. We have a qualitative feeling that the answer is sufficiently accurate (20\%), but there is no way to tell for sure without further data. A laboratory experiment in which the power dissipated, and the critical (in the light of the calculation) forward voltage drop across the diode Waveform are measured is in order.

The solving of the simple diode-resistor circuit have brought out some important points regarding modeling.
(a.) It is absolutely essential to have some idea of the desired accuracy of a solution. The time and effort required to solve a problem general y, increase drastically as the required accuracy increases.
(b) The primary motivation in making assumptions with respect to a given problem is to simplify the path to the solution, saving time and effort. Assumptions are made on the bases of given data (and associated inferences such as the absence of diode capacitance data in the example), similarity of the problem to other success-
fully solved probleme whioh include assumptions (diode capacitance 'alculations. are almost never included in 60 Hz problems), and observing the relative magnitudes of variables as they are allculated during the solution of the problem.
(c) It is not necessary to stick to the same sot of assumptions throughout a problem. It is important to note the reason each assumption is made so that assumptions may be changed at appopriate stops in the solution.
(d) In any real gluation, the problem is nor solved until the fralidity of each assumptica h domonstrated or experimentally rhecked.
(e) As the problem is modeled and solved, the crilical quanilies to be measured in the laboratory become apparent. Without some careful. conslderation beforehand, the laboratory test may bo aimless or lead to the vague conclumion "it doesn't work" instead of illumingting a weak point in the analysis.

As a linal comment, somelimus it is necessary to make an assumption solely for the purpose of simplifying the problem and without any real basis. Such assumptions may lead l.o a better understanding of' the problem and astist. in finding, a path loward the solution. However, each surh assumption must be \therefore verif'ied and checked and possibly refined or else the answer is not really a solution to the problem. An "it might be" answer is not suffircient in any practical problem.

Exercises

Ex. 1
Plot the resistivity of dilicon crystal as a function of doping density N_{D} for the range of $N_{D}=0$ to $N_{D}=10^{20}$ atoms $/ \mathrm{cm}^{3}$. It is given that $\mu_{n}=1200 \mathrm{~cm}^{2} /$ volt sec: and $\mu_{p}=250 \mathrm{~cm}^{2} /$ volt"sec.

Bx .2 Assuming a very abrupt junction (the transition from n to p type material occurs in a length of the crystal that is negligible) in a silicon diode. N_{A} in the p-type material is 2×10^{17} atoms $/ \mathrm{cm}^{3}$, $\quad \therefore$ and N_{D} in the n-type material is 4×10^{16} atoms $/ \mathrm{cm}^{3}$. Plot the value of the depletion layer capacitance Q / ψ as a function of ψ, the electrostatic potential across the depletion region. Also find the incremental capacitance $\frac{\partial Q}{} / \partial$ as a fúnction of ψ :

Problems

Problem 1.

Several high power diodes are to beused in a center +omped tranafosmer rectifer circult.

I'ransformer output, $710 \mathrm{v}_{\text {rims }}=\quad$ phase voltage
$\left(\frac{710}{2}=\text { conter tap voltage }\right)^{*}$
Diode characteristics
PRV 600 volts
Max forward current 70 amps
rms
Max junction temp $190^{\circ} \mathrm{C}$
. Max reverse leakage current at \max junction temperature $30 \mathrm{~m} \Lambda$
Additional data
Of the available supply of diodes, the reverse current $Y_{j}{ }_{j}=1.90^{\circ} \mathrm{C}$)
varies from 25-30 m A.
In the forward direction, the diodes behave as ideal p-n junctions in series wilth $\dot{O} .1$ ohm resisturs.
(a) Since the applied reverse voltage oxeeds the PRV for a diode, it is necessary to use two diodes in series, ifn order that matched diodes do not have to be selected fere resistor is shunted soross each diode.. Estimate a maximum R sưen that the peak voltage across any diode is less than 550 volts.
(b) Estimate the power dissipated by each diode.
(c) If $\mathrm{I}_{\mathrm{L}}=50$ amps ${ }_{\mathrm{rms}}$ what is the value of R_{L} (engineering accuracy)?
(d) What would be the average value of I_{L} ?
(e) Will the transformer winding resistance and leakage inductance be neglagible?

Problem 2

The circuit is to deliver 100 amps direct current to a resistive load of 1 ohm. •You are asked to find the minimum RMS current rating of the diodes (allow a 20% safety factor) and the minimum voltage rating of the diodes (allow a safety factor of $2.2 \times$ peak voltage in case of transients).

In addition, heat-sink data (power dissipation in the diodes) is frequently given in terms of average current--so calculate the average current through each diode.

Finally, spetify the KVA rating of the transformer (a single 3ϕ transformer).

Lab Pnoblim 1

"Semiconduotor Diodes" or "The Bigger, the Better"?

You will be assigned two different diodes. One diode wlll be an instrument diode having a voltage rating of less than 100 vol.ts and a current rating of a few milliamperes. Tho other diade will be a "power" diode having a voltage rating of over 100 volts and a current rating of several. amperes. You are to investigate the electrical differences between the two diodes. You will not have time to investigate all possible differences, so choose à combination of experiments you consider important and interesting.

lab Problem 2

Design the diode-resistor - apacitor network required for the following high-voltage laboratory isupply.

The supply is to be rated at 10,000 volts, 100 mA . It is to be used with various load resistances. The rectifier will consist of a series string of diodes and their associated circuitry (resistors and (apacitors). Ihe. diodes must be protiected from transients caused by opening the high voltage relay. The relay can close during any part of a cycle. You may selert the diode type from those avallable in the laboratory (a list oi diode numbers is available), however, only 240 volts rms and a limi led number ot diodes is available (you may not have enough diodes to construct the entire string).

Chapter 1

General References
1.) M1lman, M \& Halkias, C. C., Electronic Devices and Circuite, McGraw-Hill, New York, 1967.

Excellent, review of semiconductor physics and the properties of signal diodes.
2.) Gray, Paul E. and Searle, Campbell L., Electronic Prinicples, Wiley, New York, 1.969. Excellent detailed review of the hole-electron model applied to diodes.
3.) Seymour, J., Semiconductor.Devices in Power Engineering, Pitman, London, 1968.

Brief resume of semiconductor physics, excellent description of power diode construction, characteristics, and practical uses.. Solid State Physics
4.) Sproul, R. L., Modern Physics, 2nd Ed., Wiley, New York, 1963. Background of bond theory of solids, contact potentials, and ideal diodes in an especially readable form for engineers.
5.) Adler, R. B. \& Longini, R. L.., Introduction to Semiconductor Physics, Wiley, New York, 1963.

The foundation and elementary use of the electron-hole model is explained on an undergraduate level.
6.) Gray, P. E., De Witt, D., Boothroyd, A. R.., Gibbon's, J. F., Physical Electronics and Circuit Models of Transistors, Wiley, New York, 1963. A good derivation of signal diode characteristics as the ,i basis of the electron-hole model is presented.
7.) Kittel, C., Introduction to Solid State Physics, 2nd Ed., Wiley, New York, 1956.

This reference is particularly useful if understanding the statistical viewpoint of the band theory of solids and the model of electron conduction in metals.

Clequter Contents

Tre primary purpose of this chapter is to acquaint the reader with the matic and damaice chancteristice of the thyristor or SCR. The SCR is modeled as a series of diodes to gain insight into the static V-I characteristic. The triggering characteristics are explained in terms of a two transistor medel of the SCR. The transient turn on-turn off characteristic's are then rationalized in terms of the combination of the two models. Conmon methods of triggering are considered and an example of a trigger circuit using a unifunction transistor is presented. Finally, some D.C. turn-ofe circuits are nremented and a particular turn-off circuit is analyzed as an example.
The Thyristor or SCR
The thyristor or SCR'is a three terminal semiconductor devtce. The name "thyristor" comes from the fact that the thyristor is a transistor-like device (having three leads and made of a semiconductor) having properties simi lar to that of a gas thyratron electron tube (which can be triggered to change from an essentially open circuit device to an essentially short circuit device in a matter of microseconds). SCR is the most commonly used name of the device, standiag for silicon (or semiconductor) controlled rectifice. The term SCR is also a descriptive term since SCR's are made of the semiconducting material silicon, and SĆR's possesses rectifier-like properties whilch can be controlled. to a certain extent using the third terminal. The electronic schematic: symbol for an SCR and the names of the terminals yre shown in figure 2-l along with the V-I characteristic of the anode-cathede terminals. The V-1 characteristic is divided into three regions for future reference as the device operation is. modeled.

Figure $2-1$
Next we consider a simple circuit to show the basic usefulness of the

SCR (FIg. 2-2a).

0

Figure 2-2
Figure 2-2b shows the load characteristic superimposed on the SCR V-I characteristfc. When the circuit is first connectod, the SGR is in the "forward blocking" state, the current I has some small (compared to E / R) value, and the circult state is represented by position 1 in figure $2-2 b$. If a gaté current I_{g}, which is large enough. (aIthough possibly hundreds of times smaller than the SCR rated forward current) and of sufficiently long duration (usually in terms of microseconds) is applied to the SCR, the SCR will
foe "triggered" into the "forwax conducting". state mppresented by position 2 in mingle $2-2 b$. In an sCR, the gate no langer has any control over the circuit operation, and the SCR will remain fin the forward conducting state ont, f the hatiteriy is disconnected.

We can summarize the gros (somewhat oversimplified) characteristics of the SCR.
(a) The SCR blocks current in the reverse direction (region 3, fig. 2-J).
(b) The SCR acts as a switch that can be tied on by the gate in the m forward direction (Fig. 2-2).
(c) Once the SCR is turned on (forwarthonducting), jut cannot be turned off unless some external circuit reduces the forward current to zero.

f
An examination of the ratings of tomereially, available. ACR's shows blocking voltages in excess of arthousand volts and average currents on the order of hundreds of amps. Clearly, SCR's are capabere ditontroling large amounts of power. The additional facts that SCR's are fast aching (compared to mechanical switches), small and rugged (compared to ${ }^{\circ}$ get tubes), and do not. require power to keep them "turned on" (as transistors require) makos sCR's particularly attractive in the area of power control. There ape bier related semiconductor devices such as gate controlled switches that can be turned off as well as on by the gate, triacs which can be triggered on in both forward and reverse directtions and many more semiconductor switching devices. At priming, these devices do not have the power handing capability of SCR^{\prime}, but are valuable devices' at lower power levels. Since these devices can be modeled with relatively simple extensions of the SCR model, we will not consider them in any detail in this book.

SCR Construction

The SCR is made with a single crystal of silicon having four layers of differently doped crystal (Fig. 2-3). The reason for partially cut ting away
one layer to make the gate connection in the center will become clear when we discuss turnon transients.

Figure 2-3.

Starting from' the anode, the anode lead is connected to fairly heavily doped (on the order of 10^{19} acceptor atoms/ cc) p-type material. Next is a comparetively thick, lightly doped (on the order of 10^{14} donor atoms/ce) layer of n-type material. The next layer, (to which the gate is connected) is p-type material, doped with an intermediate density of impurity atoms. Finally, the last layer, to which the cathode lead is connected, is a heavily doped n-type material: The thickness of the crystal is exaggerated in figure 2.3 to show the n and p-type layers. The crystal is normally $\dot{\mathrm{a}}$ thin disk or rectangle which is soldered or tightly pressed (by a powerful spring) against the SCR base in order to encourage the conduction of heat generated. in the crystal to the outside heat -sink (Fig. 2-4).

pigume: 11.

The SCR as a Serics of Diodes
In order to gain some insight into the betnvior of the erof, whsider a filament of the 'rystal as modeled in figure 2-i). 'Then, as previomsly in the , case of the diode, aftor understanding the operation ot a unt, aroa of the prystal, we need only multiply the appropriate quantitites (surd as; current. (apacity and capacitive effects) proportional ion the area of the wryat.

Figure? - b

Flgure 2-5 shows the commonly used polarity conventions for voltages and currents associated with the SCR and associates, for purposes of discussion, numbers with each of the three $\mathrm{p}-\mathrm{n}$ funtions in the SCR.

As a first approximation, we may try to think of each $p-n$ junction as adiode (FIG. 2-6). Such a model would rationally explain the GCR forward and reverse bloçing characteristics (regions 1 and 3 respectively of Fig. $2-1$).

Figure 2-6

When the anode potential is positive wlith respect to the cathode, function 2 blocks the current (forward blocking, region lof Fig. $2-1$). When țe cathode potential is positive with respect, to the anode, junctions 1 and 3 block the current (reverse blocking, region 3 of Fig. 2-1.).

In order to further improve our understanding of SCR operation, we shall plot the potential as a function of distance in the filament. Such a plot will require the charge density and resulting $\overline{\mathcal{E}}$-fteld just as in the case of the dicide. I'o simplify the plots, the metal-semiconductor jupetions at the device leads will be ignored. We first attempt to plot the potential distribution for the case of thermodynamic: equilibrium.

Figure $2-7 a$ forms the first basis for the qualitative plot. We have a "rough idea" of the relative doping densities, and we know the n-type layer between junctions 1 and 2 is thicker than the other layers. The doping density is plotted on a logarithmic scale. Next. (2-7b) the charge density $\boldsymbol{\rho}(x)$ is estimated on a linear scale: Although the lengths of the depletion regions are unknown, the $S(x)$ times Δx areas (on each side of a junction) must be equal
as in the case of the diode. Note that considerable distortion of the charge density amplytudes and depletion layer whatha is necessary to display these parameters on a singlo graph, since the charge densities may vary by more. than five orders of magnltude. Using the "square" charge donslly assumption, we apply hauss' law to find the $\stackrel{\rightharpoonup}{\boldsymbol{E}}$-field, $\mathcal{E}_{\mathrm{x}}=\int 3 \mathrm{dx}$ on a per unit area yasis. . The \mathcal{E}_{x}, values are triangles ($\mathrm{Flg} .2-7 c$) Just as in the diodo casc. Intograting to find the potential, $-\int \mathcal{E}_{\boldsymbol{x}} \mathrm{dx}=\boldsymbol{\phi}$, we get a potentlal as a function of distance plot conslstang of sections of parabolas and having an inflection point at ach jubction (Fig. $2-1 \mathrm{~d}$).
γ

In plotiting the potential \mathcal{F} as a function of distance, we can make use of the additional information from solld state phyaics that the contact poten al . differende for strongly n, and p-type matorials is very noarly equal to the Ionization energy in electrons volts for the covalent bonds in the crystal "(that is, about l.l volta for gilicon). Thus the electrostatic potential difterence from ahode to cathode should be about 1.1 volts. Confact potential differences between layers that are hot so mervily doped should be less, so in figure 2-7d the potential differences across junctions and ϕ aro'drawn smaller than the potential difference across junction 3. While it is not/possible to display a reasonably accurate charge density plot (which also distorte ar the $C_{\mathcal{F}}$ and $\boldsymbol{\psi}$ plots) due to the large vartations $\ln \rho$ and the neressity of making. equal charge-distance areas on each side of a function to find the depletion. region dimensions, such "fudged up" plots as figure $2-7$ may help us loward a" better qualitiative understanding of the depletion repion sizes, volfare dreps across junctions, and $\overrightarrow{\mathcal{E}}$-fleld magnitudes in the ser. Such an under:ianding witl help us in unraveling some of the detail: of ser operation, and of course, untess we are aware of fueh details wo can'l maki reasonable assumptions or models when using the device"in a "ircuit.

- Conside the corward-blocking case (fis. 2-8). The anode is made positive with respect, to the cathode, and junctions 1 and 3 should be slighty forward biased while junction ?'should be reverse birased. W. apply arguments similar to thase used in madeling a diode. Wo assume, since only a small current will flow, that the IR drops in the crystal are negligible. Also, ginco only a small (compared lo rated) current flows, the clertrostatic potential differences across the forward biased junctions cannot be very different from the potential diferences in the cas: of thermondmamerquitibrium. pherefore, the applied anode-cathode voltage must add to the potential difference across junction number 2 . We now sketih the charge density, $\overrightarrow{\mathcal{E}}$-field, and potential throughout the crystal knowing:
(a) $\mathcal{S}, \hat{\mathcal{E}}$, and $\boldsymbol{\psi}$ in ail places except function 2 appears approximately the same as in flgure 2-7,
(b) The potential difference across function 2 is increased by the voltage applied to the device terminals,
(c). We know how \mathbb{S}. \vec{E}, and ψ must be related from our experience in sketching figure $2-7$, that is, charge density will remain the same, the length of the depletion layer must increase, $C_{\neq}(x)$ will. be a triangle, and \mathcal{F} fill be parabolic: with an inflection point at junction 2.

Summarlzing our understanding of the forward blocking mode; a model consisting of two forward blased diodes and one reverse biased diode yields"a V-l eharacterlsific similar to that of a forward blocking scR. A reverse saturation current will flow for the model as in the real device. At sutricientiy high forward voltage (laqge anode to cathode voltage) the $\overrightarrow{\mathcal{E}}$-field at junction 2 will berome so targe that avalanch occurs, accounting for the abrupt increase in.current at high forward voltage (at maximum forward voltage, region 1 , Fies. 2-1). We also see, as a consequence of the sketcin or flgure $2-8$, that the Heghty doped n - lype region between junctions 1 and 2 is reaponglble for the SCR's'ability to bloek large forward voltages. the light doping yiclds a wide depletion layer and a smaller peak $\overrightarrow{\mathcal{E}}$-field for the same voltage difference than would orcur for hoavjer doping. Thus avatanch is discounared by light doping. Of course, the ideal diode behaviour is modified by surface leakage effects arauz the junction as in the case of a power diode.

The reverse blooking mode (anode negative with resperel to the cathode) is only alifhty complicated by the fact that both junctions 1 and 3 are reverse biased, and we might ask how the applied voltage divide: across lhose two jumetions. Junction z is slightly forward biased and hess a potential drop obdghty

Figure 2-9

Lens: than in the thermodyname equilibrium case, Im sketching figure $\dot{2}-9$; we expect that as the anode is pradually made more negative with rempect to the cathote, the "diditional" voltaga is first taken up by junction 3 because; the reverse biased dlode having the smaller reverse soturation curront willl be the diocte litmiting the current and will have the largest voltage drop." Junction 3 will have the smaller reverse saturation current because;
its एन layers are more heavily doped (compare N_{A} between. Junctions 2 and 3 to N_{D} between junctions 1 and 2, fies. 2-7). Recall: that the reverse saturation current depends on the concentration of holes in the n-layer and electirors in the p-layer, and the mone heavily doped the materiafis are, the smaller will be the relevant concentrations.
As the reverse voltage increases, the maximum value ot the $\overrightarrow{\mathcal{E}}$-field at Junction 3 increases to the point where avalanch occurs. The junction does not melt because junction L now limits the current. Further voltage increases aquse the potential drop across junction 1 to increase as its depletion layer widens while the potential drop across junction 3 Tremains approximately constant at, its avalanch breakdown vollage. This is the situation sketched in figure 2-9. Again we sce that i.t is the lightly doped, thick, n-layer that is responsible for the high voltage rating (compared to transistors) of the SCR, and the model yields the reverge characteristic of a diode which agrees with ubservod GCR chapacteristies in the reverse blocking mode.

Finally we consider the forward conducling mode (region 2, fie. a-l.). The only way this mode can bof explained in terms of the series of diodes model, is that all three junctions must bo forward binsed ! such a phenomonon rould not bcur in the series connection of three independent diodes. llowever, we shall brief'ly consider what might be observed if the junctions were forward
biased, keping in mind that we don't know how to get, into or maintain such a state.

The potential vs. distance diagram should be similar to that of the thefmadynamic equilibrium case except for slightly smaller junction potential differences and IR drops due to the large (in comparison to blocking currents) forward currents (Fig. 2-10). We woulid expect the largest IR drop in the crystal to be across the lightly doped, thick, n-type layer between functions 1. and 2. Not only is this layer the thickest but is has the highest resistivity due to its light doping.

Figure 2-10

As the applied voltage increases, the forward drop across the junctions 1 and 3 should decrease, and the current should increase as in the case of a forward biased diode. As junction l allows more carriers to diffuse into the n-type layer between junctions 1 and 2 , the carrier density in the n-type layer increäses. This increase in carrier density should decrease the resistivity of the material, particularly in the lightly doped n-type region. Therefore, the IR drop should not increase proportional. to the current. This model agrees with the observed behavior of the forward voltage drop as a function of current for an SCR (Fig. 2-11). of course there is also. a forward

drop due to the potential differences across the junctions. Ihe forwand voltage drop sholld be less than for two diodes in series because the potential drop across junction 2. $\mathbf{s u b t r a c t s}$ from the drops across l and 3. Summarizing, the three diode model of an SCR is not satisfactory in explaining the forward conducting mode because junction 2 must be "forward biased" while a very large reverse current passes through the junction. If only the problem of function 2 could be "gotten over.", the shape of the V-I characteristic for forward conduction could be explained in terms of junctions 1 and 3 and the conductivity modulation of the n-type layer between junctions 1 and 2. We have no means of getting into or remaining in the forward conductingamode cording to our model. Therefore, we must search for a more sophis-- ticated model in which the junctions are not so independent.

Ihe Two Transistor Modol of an SCIR

As a next step in understanding GCR operation, we congider modeling the SCR as some intexconnection of three layer devices since three le intermediate betweon tw: (dlodes) and four (the SCR). The simplest three-layed device with which we have a reasonable degree of familiarlty is the ordinapy blpolar translstor. The transistor normally lias one junction reverse biased (collector) so we still cannot model the forward conducting made. However, We pursue the model if transistora for the forward blocking state since we may gain some insipht in getting from the forward blocking to the forward conduct, Ing mode, nud wo can do somothing with the gate terminal (which was ignored in the diode morlol). Since function ? Is the only reverse biased function in the forward bliwking SCR, Junction a must correspond to the collectors of the transistor model which must also be reverse biased. We then "break" the SCR into a pny and ari non transistor as shown in figure ? - 12.

Betore mathematically analyzing the two transistor model, we consider the physical properties the circuit should have. This "physical reasoning" step. allows some measure of checking the validity of the mathematical results. In the forward bloching mode, the anode is at a large positive potential (tens-hundreds-a thousand volts) with respect to the cathode. our transistor model will not be good l'or mariy hundreds of vo lts or larger because the high magnitude of the forward blocking voltags depends on the thick n-layer in the SCR's, and transistors do.not. possess such a layer. In the forward blocking mode, Ig (Fig. 2-12) is zer:, and T and T are very small compared to the device current rating. It musi be leruc that transistors 1 and 2 are both in the "cut-off" region of' transistor operation because:

(a) If both transistors were conducting, I_{A} and I_{X} would not be small e: Therefore at least one of the transistors must be \cdot "cut-off,".
(b) If transistor 2 is assumed cut-off, $I_{B 2}$ must be small. $I_{B 2}$ is limited of fy by transistor 1 , therefore transistor is also cutoff.
(c) If transistor \because is assumed cut-off, $I_{C 2}$ must be small. I $I_{\text {Ce }}$ is limited only by transistor 2, therefore transistor 2 is also cut-off.

If a current pulse I_{g} is introduced into the gate lead, transistor 2 begins to conduct and $I_{C 2}$ increases. This in turn causes transistor 1 . to conduct which further increases $I_{B 2}$ which increases $I_{C 2}$, etc. The two \therefore transistors are connected in a positive feedback loop, and eventually (in mi crosecords) arrive at a fully -on (saturated) state so that I_{A} is no longer blocked. It is this "turn on" or "triggering" mechanism that we wish to fur there, "explore.

The basic transistor current relations are:

$$
\begin{aligned}
& I_{c \mid}=-\alpha_{1} I_{E 1}-I_{c 01} \quad\left(T_{1}\right. \\
& I_{c i}+I_{b i}+I_{E 1}=0 . \quad\left(\Sigma i_{1}\right.
\end{aligned}
$$

$$
\begin{aligned}
& I_{C 2}=-\alpha_{2} I_{E 2}+I_{C O R}\left(T_{2}\right. \\
& I_{C 2}+I_{E \pm}+I_{B 2}=0
\end{aligned}
$$

Applying these basic relations to the final circuit of figure 2-12 yields the following equations.

Transistor 2

$$
\begin{align*}
& \text { (1) } I_{c 2}+I_{s 2}-I_{\kappa}=0 \tag{2}\\
& \text { (2) } I_{c 2}=\alpha_{2} I_{k}+I_{\mathrm{zoo}}
\end{align*}
$$

Transistor 1
(3) $I_{A}+I_{g}-I_{B 2}-I_{c 2}=0$
(4) $\quad I_{g}-I_{\mathbf{A Z}}=-\alpha_{1} I_{A}$
We choose to solve for the anode current
wi. rat we, systematically e eliminate $I_{\text {BR }}$.
substitute $/ \operatorname{limin}^{3}$
(153) $I_{A}+I_{g}-I_{K}=0$
substitute $/$ into 4.
(1.4) $I_{g}+I_{c 2}-I_{k}=-\alpha_{1} I_{A}-I_{c o 1}$

Next we eliminate T_{2} by substituting equation \boldsymbol{L} into equation $\mathbf{1} 4$.

$$
\text { (1,2,4) } \quad I_{g}+\alpha_{k} I_{k}+I_{c o 2}-I_{k}=-\alpha_{1} I_{A}-I_{c o 1}
$$

The terms containing I_{K} are collected for convenience in eliminating I_{K} Rearranging $1,2,4$

$$
I_{g}+\left(\alpha_{2}-1\right) I_{k}+\alpha_{1} I_{A}=-I_{c 01}-I_{c 02}
$$

$$
\text { substitute } 1,3 \text { into } 1,2,4
$$

(12,3,4) $I_{g}+\left(\alpha_{2}-1\right)\left(I_{A}+I_{g}\right)+\alpha_{1} I_{A}=-I_{c 01}-I_{c 02}$ b, 2, 3, 4 may be solved for $I_{p e}$ in terms of $I_{g} \cdot$ '

$$
\begin{gathered}
I_{g}+\alpha_{2} I_{g}-I_{g}+\alpha_{2} I_{A}-I_{A}+\alpha_{1} I_{A}=-I_{c 01}-I_{c 02} \\
I_{A}\left(\alpha_{1}+\alpha_{2}-1\right)=-\alpha_{2}^{2} I_{g}-I_{c 01}-I_{c 02} \\
I_{A}=-\frac{\alpha_{2} I_{g}+I_{c 01}+I_{c 02}}{\alpha_{1}+\alpha_{2}-1}
\end{gathered}
$$

This is a very strange result! It states that when the anode is positive with respect to the cathode and the SCR is in the forward blocking mode, the current flows out of the anode lead. Thus the $S C R$ delfvers energy to the external circuit as if it were a battery, Of course, the result of the calculation seems absurd only if it is assumed that ${\underset{i}{i}}$ and a_{2} have values near one. Experience with transistors shows that near the, cut-off region, a decreases. To make sense of our result, we must consider the variation of α with collector current in a transistor.

Digression

Let us briefly consider the basic operation of a transistor according to the electron-hole model. The two junctions are spaced closely together (Flg, 2-13) so that the mobile charge carriers that diffuse across the "emitter" function can further diffuse aciross the " central "base" region and be collected by the high olectric field at the "collector" function.

Figure 2-13
As the mobile carriers traverse the base region, some carriers will recom-.
bine. At low levels of minority mobife carrier concentration, the probability of recombination is proportional to the carrier density. a expresses the fraction of mobile carriers diffusing from the emitter that survive in the base region and are collected at the collector junction. α can be decreased by making the base region longer and by reducing the

"lifetime" of a carrier by adding certain impurities which disturb the crygtal lattice in" a complicated way so as to inoremee the probability of recombination. The for transistor 1 (with the long n-type layer) usually ranges from less than 0.1 to about 0.4 depending on the particular SCR being modeled and temperature.

To explain or model the variation of " α with collector current, the action of lattice disturbances ("tfaps" or "recombination centers") is examined. Each lattice flaw which might be due to a physical imperfection or certain impurities in the lattice creates an inhomogenuity in the electric field at that point. For example, in the p-type material of an npn transistor the irhomogenuity may attract and hold or delay \because at that site ("trap") an electron. Now the electron's charge and the original inhomogenuity attract a hole. The electron and hole recombine, leaving the trap ready to collect another electron. The trappingrecombination effect takes place in addition to the recombination due to the random coming together of holes and electrons and thus increases the rate of recombination.' As the density of electrons in the p-type material increases, implying an increase in the current density in a transistor, the traps become saturated. That is, most of the traps have electrons waiting to be recombined. Thus at larger current densities' (not due to increased drift but due to increased carrier concentration), trapping becomés less significant as a recombination mechanism. This means that the rate of recombination does not increase in proportion to the current density and that a higher fraction of the carriers will reach the collector, resulting in an increase in $\alpha^{\prime \prime}$. 'Trapping is probably important in both the emitter depletion layer and the "base" regions of our model. Figure 2-14 illustrates a variation of the $\alpha^{\prime} s^{\text {. }}$
with current and temperature. At higher temperatures, there are more carriers because more covalent bands are ionized and therefore a higher percentage of the trape are saturatod.

Figure 2-14

Thus we see that the $\alpha^{\prime} s$ of the transistors in the model are less than oně. If I_{g} is applied and gradually increased, α_{2} and also α_{1} (by positive. feedback action) increase due to the increasing current density in the transistors: penutally as I_{g} is increased, $\alpha_{1}+\alpha_{2}$ approaches one and I_{A} approaches $+\infty$. The physical significance of I_{A} approaching is that the SCR is no longer blocking so that current can flow freely, and that the gate current I_{g} can be removed since it, is no longer important in determining I_{A}. Once the current density in the $\underset{\sim}{S C R}$ is sufficiently high, the device triggers and stays conducting until the current density is lowered by external circustry until. $\alpha_{1}+\alpha_{2}<1$. The value of the anode current that will maintain $\alpha_{1}+\alpha_{2} \geq 1$ with zero gate current is defined as the "latching current". The "holding current" is defined as the value of the anode current in a particular circuit
at a given temperature at which the conducting transistor will switch back to the blocking state. Note that in the "holding current" definition some gate current may be flowing (but not enough tơ keep the α a high).

It is possible to trigger the SCR by means other than a current pulise into the gate terminal. All that is necsssary is to increase the current density at functions 1 and/or 3 so that the α_{s} increase sufficientily. This can be done by heating the SCR, shining a bright light on a junction and creating electron-hole pairs by photoionization, applying a voltage pulse to the anode-cathode terminal and using the capacitive effect currents of the SSR to trigger the device, or irradiating the sCR with X -rays, gamma rays, neutrons, etc.

We have now gained some insight, into the turn-on mechanism using the two transistor model. Obviously such a model is no longer valid in the forward conducting mode because junction 2 is no longer biâsed life a transistor collector junction. We choose a hal-kearted "fudge" by."saying that we also have described a mechanism to maintain the SCR in the forward conducting state since the current density is high and iff junction 2 began to block, the trigger conditions $\left(\alpha_{1}{ }_{1}+\alpha_{2}=-1\right)$ would be fulfilled. \therefore Hence once trigéered (and the anode current is not limited to a value les than the holding current) the SCR cannot spontaneously retupn to the forward blocking state. We choose to stop the modeling process at this point" because, we have succeeded to a remarkable degree in explaining the groww $\dot{V}-\mathrm{I}$ characteristic of the $S C R$ and because further. ${ }^{\circ}$, modeling is difficult, "To model the forward, conducting mode of the SCR , we would have to carefully consider and balance dfeffsion' and drift effects not only at the three functions but also the bulk meterial between anctions and a 3. We also know that conductivity modulation would modify the drift parts of the model. Further, to model the triggering process, we would have to take into consideration at least two models of recombination. While more detalled
$\bullet \quad+\quad$-ir \quad,
models would certainly be instructive and even absolutely necessary it we were designing $3 \mathrm{CR}^{\prime t} \mathrm{~s}$, the modeling process can go" on "forever. If in the application of an $3 C R$ w " find our present models lnsuffilclent, we will ether extend our models or else have to go deeper into electron -hole modeling.

We next consider the static $V-I$ characteristic of the gate-cathode terminals. In the case that no connection is made. at the anode, on the basis of bur three diode model of the $S C R$, we would expect** "qaterathode $V-T$ characteristic similar to the dashed curve in figure 2-1.5a.

The actual $V-J$ riaractoristir is shown by the solid curve in figure $2-15 a$. The differences between the dashed and the solid curve ard, rather easily. explained in terms of our models surface leakage current hallows more current "to" flow in the reverse direction than would be expected "in the" case of an ideal. diode. In fact, such leakage paths are specially pquided in many SGR's ("shorted emitter "SCR"s) Hor reasons related to the transient characteristics - (to^be discussed later en of the oR. In the forward direction, the bulk resist"ane of the pritype gate layer which is much. less aneavily doped than the n-type cathode payer must po consiciored. 'morctore at "high" forward' voltages or
currents, the gate-cathode terminals appear, more like a resistor, then a diode.
In the case that the diode is forward blocking, again our model predicts that as the gate voltage is slowly varied, the $V-I$ characteristic should be about the same as in the case of no connection to the anode until the gate current begins to be so large that triggering is imminent (fig. 2-16).

Figure $2-16$
Once the SCR has been triggered, the gate characteristic changes radically, acting like a sone due to the current passing through the junction from the anode circuit In fact, the gate V-I characteristic will depend to some extent on the anode circuit (Figure 2-17).

蝶

The gate V-I characteristic under conditions of reverse blocking is left as a problem (Lab problem 2-2) for the student.

SCR Transient Characteristics
If an SCR , restistor, and battery are connected in series as shown in figure 2-18a, and the SCR is triggered by a step of current into the gate; some time will elapse hefore the circuit current and the voltage across the SCR reach steady at,ate. While the time required to reach steady state depends upon the partiuclar SCR in the circuit, times on the order of $10 \mu \mathrm{sec}-50 \mu \mathrm{sec}$ are common. The total time to reach steady state is frequentily subdivided into three shorter times (Fig. $2-18 \mathrm{~d}$), important from design considerations and related to distinct physical processes.
*The "delay time", \mathcal{Y}_{D}, can be related analytically and experimentally to the time required for the mobile carriers to cross the $S C R$ regions corresponding to the bases in the two transistor model. Thus \mathcal{J}_{D} can be donsidered the time "required for the current densities at the transistor emitter junctions to change and begin increasing the transistor alphas. The "risetime, $\boldsymbol{\mathcal { F }}_{\mathrm{R}}$, is the time required for the positive feedback process of the circuit in the two transistor models to increase the current densities such that $\alpha_{1}+\alpha_{2}=1$. The change in current or voltage (0.1 to 0.9 of maximum) used to define risetime is in accordance with generally accepted conventions regarding pulse . weveforms. "The rise-time decreases as the gate triggering current increases because large gate current's help to build up the current density at the junctions faster: The sum of the delay and risetimes is frequently denoted as the "turn-on time." Clearly the turn-on time will vary with gate current "drive" and from SCR to SCR. Turn-on times are typically on the order of several micfor seconds.

The remaining. time until steady state is reached is called the "spreading fime", \mathcal{J}_{S}. our models for triggering and forward. conduction were made on the basis of examining a filament of the crystal. Not all, filaments are triggered simultaneously simply because some filaments are nearer the gate than others. Flgure 2-19 illustrates the "spreading" of the forward conducting state in the crystal.

While at the end of the risetime only a small area of the crystal is conducting, all of the crybtal area is conducting at the end of the spreading time.

Note that the anode current is 90% of its maximum value at; the end of the risetime, yet only a small area of the crystalsis conducting. Under such conditions, the current density in the conducting area may be vary large, heating the area to hjgh enough temperatures to damage the junction in order to prevent such damage, a maximum $d \mathrm{~A} / \mathrm{dt}$ is usually specified for an ACR , allowing the conducting area to spread fast enough to accommodate the increasing current: The reason for placing the gate in the center of some SCR crystals (Fis. 2-19b) is that the conducting area has only torspread about half as far as in edge triggered GCR's (Fig. 2-19a). The dit dt limitation can bo reduced as wall as the'turn on "ṭme; by "driving the gate hard." If a large current is introduced in the gate. lead during the first few microseconds of triggering, the initial thlggered area will be larger than if the gate current wêre gradually increased. "The gate current can then be reduced to a'
lower value until the anode current rises to a value that will maintain the SCR in the conducting state ("latching current"). Figure 2-20 shows an "ideal" gate current waveform that allows the largest possible $\mathrm{dr}_{\mathrm{A}} / \mathrm{dt}$, has a minimum turn-on time, and has a duration long enough to insure"the SCR will stay on for the given anode current waveform.

Figure o - 20

Such an "ideal". waveform is difficult to achieve, and, various approxlmations * to such a waveform are provided by practical trigger circuits. In general, it is very desirable to apply a gate current waveform whose risetime is smal ler than the SCR turn-on time.

We now consider a "turn-of'f" transient. If the voltage waveform shown in figure 2-21. is applied to the SCR, the forward blocking mode will we restured. Since , a gat variety of voltage (and current) waveforms can restore the for- .
ward blocking mode, we will examine the essential features of this particular waveform and hope that we can apply our knowledge to other situations.

$$
\begin{aligned}
& \text { VAX } \\
& \begin{array}{l}
\text { MAX dVAK/d\&THAT CAN } \\
\\
\text { REAPPLIED WITHOUT } \\
\text { RETMIGOEAINO }
\end{array}
\end{aligned}
$$

Figure 2-21
7
Figure $2-21$ shows a large reverse voltage applied to the GCR in order to turn off the $\mathbb{S C R}$. When the reverse voltage is first applied, a reverse current flows, primarily due to the motion of mobile charge carriers in the base regions of the two-transistor model. Some component of the current is also due to the changing widths of the junction depletion regions. if a forward voltage was applied while the current was still flowing, the current densities and therefore α^{\prime} 's would still be large enough that the SCR would re-trigger, and thus: the forward blocking mode could not be reached. Also, due to the capacitance of the depletion layers, the rate of increase of
voltage must be limited or else the ourrents flowing into the junction capacitances will raise the $\alpha^{\prime} \mathrm{s}$, and the $\mathrm{SCR}^{\text {will }}$ re-trigger. The time ${ }^{2}$. : requitred for the stored moblle charges to recombine plus the time for the $\$ C K$ to recover its, forward blocking capability (due to the $\mathrm{dV}_{\mathrm{AK}}$ /dt limit) is known ." as the "turn-off time", $\mathcal{Y}_{\text {off }}$. The turn-off time depends to a large extent on the circuit in which the SCR is used as well as the SCR, however, "typical" turn-off times are frequently presented in the SCR data sheets. Turnoff time becomes a very lmportant concept in high frequency "SCR circuits. Because the turn-off time is usually more, than an order of magnitude longer than the turnon t!me, the turn-off time usually determines the maximum repetition rate for triggering an SCR.

SCR Trigger. Circuits

 a circuit tsed to trigger an SCR can be designedin detaily the SCR gate spec - . ifications must be considered. While the turn-on and spreading times are usual 4 specified in a relatively straight-forward way, the magnitudes of the voltages and currents that may be applied to the gate are'rela'ted in a more complicated way. The pertinent gate specifications axe:
(a) Specifications to protect the device from damage such as peak forward voltage V_{gK}, peak forward current I_{g}, peak instantaneous power ' $\mathrm{gK}_{\mathrm{g}} \mathrm{I}_{\mathrm{g}}$, and maximum average gate power' $\left(\mathrm{V}_{\mathrm{gK}} \mathrm{I}_{\mathrm{g}}\right.$) avg,
(b) Specifications giving the minimum gate currents and voltages required , to trigger the SCR. These specifications are temperature dependent. t The gate specifications are further complicated by the fact that there is a significant variation of the gate V-I characteristics and the minimum gate voltages and currents required to trigger the SCR (b) for individual SCR's of the same type (number designation).

The gate specifications may be given as individual numerical ratings, may be summarized in a chart, or may given as combination of the two. The particular format used to describe ind specify the gate characteristics varies considerably from manufacturer to manufacturer, but the developing of a "typical" gate triggering chart w fly further clarify the basic ideas. First we consider the fact that for a given type of SCR, there is a variation in the V-I characteristics of individual units. An individual SCR's $V-1$ characteristic must be between the extreme limits of the V-I characteristics considered acceptable by the manufacturer (Fig. 2-22).

We further define tod region of SCR triggering by denoting permissible values of forward voltage and current and the maximum instantaneous power. As a helpful note, we also show (dotted line, fig. 2-23) the maximum average power

Figure 2-23
Finally, we consider the fact that some currents I_{g} and gate voltages V_{gK} are too small to trigger the SCR. There is considerable variation of the minimum triggering quantities among the individuals of a given type of SCR (a specific JAN serial number or manufacturer's code catalog number). Because we want the information for design purposes, 'we' must choose the maximum value for the series of $S C R$'s of the minimum current required to trigger or minimum voltage required to trigger the SCR. Thus all of the SCR's of a given type can be triggered with a voltage or current greater than the specified amount. "These values are frequently given at several temperatures because the SCR's are "easier" tho trigger at higher temperatures. The clear area of figure 2-2 Lis the triggering region for a given type sCR. The actual V-I characteristic lies somewhere in this region, the voltages and currents are large enough to trigger any SCR of the given type, and the volt age, current, and power levels are sufficiently low that, the device will not, be damaged.

Figure $(3,24$
There is an infinite variety of triggering circuits for SCR, and there is, no single "pest one" for all applications. The design of the triggering \&urcuid must include not only the logic for the desired control of the SGR but also the characteristics of the anode circuit. For example, the simple circuit of figure $2-25$ is intended to close the relay a specified time after switch " S " is closed. The trigger circuit will usually be chosen as an Integral part of the timing circuit thus minimizing the number of components, and the triggering pulse must last long enough for the current in the inducfive anode circuit to exceed the latching current.

- We shall conaider a variety of triggering eireuits, not an attempt to - compile a "diotionary" of cirouits, but as a spur tothe imasination.

Figure $2-26$ and b illustrates two circuits that control the current through a load resistor R_{L} by sensing the magnitude of the input voltage. In both cases, the load current flows in the positfve halif-cycle of the source V only after the source voltage has exceeded some preset magnitude. obviously, these trigger circuits operate over the electrical angle of $0^{\circ}<\theta<90^{\circ}$ of the source sinusoidal voltage. \therefore If the SCR has not triggered by, the time the voltage applied to the gate has reached its maximum value, the SCR cannot be triggered without decreasing the value of R.

The electrical angle at which triggering occurs (assuming a sine wave input) is called the "firing angle". The firing circuit of figure 2-26a is an inexpensive circuit having a far from ideal triggering waveform. The trigger voltage rises slowly, unduly limiting the maximum permissible value of $\mathrm{dI}_{\mathrm{A}} / \mathrm{dt}$. Also, the voltage at which triggering occurs will depend on the individuàl SCR and its temperature. The diode D is required to prevent excessive gate currents when the $S C R$ is reverse blocking (remember the gate

Junction will be in a avalanch state when the reverse voltage exceeds $10-20$ volts). Figure 2, 26b shows a more elaborate voltage sensing dircuit using a high gain differential amplifier (frequentiy an "operational amplifier"). As long as the battery voltage " E " exceeds the supply voltage V by more than a few millivolts, the high gain ($\sim 10^{5}$ or more) malifier will be saturated at, Its maxifum negative output voltage. When V, exceeds E by a few millivolts, the amplifier switches to its maximum positive output voltage. Thus a "step" of vol.tage is supplied to the power amplifier that "drives" the SCR gate. This circuit has advantages over the previous circuit of a gate drive amplitude that is independent of source voltage, steep triggering wavefront, and less dependence of the firing angle on temperature. However, the amplifier circuit is clearly more expensive.

Sometimes it is preferable to vary the phase of the controlling, waveform rather than vary the level at which the trigger circuit is activated. One particularly convenient phase shifting circuit, having the virtue of an output voltage magnitude that is indeperident of the phase shift, is the "thyratron phase shifter." The circuit (Fig. 2-27) was originally invented to work with gas thyratron tubes, but the circuit works almost as well with SCR's.

Figure 2-27

This circult is mostrasily anaigzed by constructing its phasor diagram. It 1s as aumad that the transfommer is lightly loaded so that its lakage reactance \because and resistance has no slgnificant effect. Then $\vec{V}_{1 n}, \vec{V}_{1}$, and \vec{v}_{2} all have the same phase angle. Innowing that the current through a pure capacitance leads the capacitor voltage by 90°, and further assuming that the output current - (drawn by an external circuit connected to terminals A and B) is negligible compared to the current in resistor R, the phasor right triangle with hypotenuse $\bar{V}_{1}+\bar{V}_{2}$ is constructed.

$$
\vec{V}_{1}+\vec{V}_{2}+\overrightarrow{I R}+\vec{V}_{c}=0 \text { by Kirchoff }
$$

The locus of all points B for different R^{\prime} 's must be a semicircle having radius $\left|V_{1}\right|^{\prime}=\left|V_{2}\right|$ by elementary geometry. Thus the phase of $\vec{V}_{\text {out }}=\vec{\rightharpoonup}_{B A}$ can be varied relative to the phase of $\overrightarrow{V_{i n}}$ from 0° to 180°, and $\overrightarrow{V_{o}}$ out will have the same amplitude (the radius of the semicircle) regardless of the phase shift. It is possible to have phase shifts in the range 180° * $<360^{\circ}$ by interchanging the fositions of the capacitor and resistor.

The gradually rising sine wave out of a phase shifter makes a poori SCR sate pulse. "While a large wariety of ways to "sharpen' the wavefront" of the gate pulse exist, such as the circuit of figure $2-26 b$ or schemes using monostable multivibrators, there is a class of semiconductor devices specifically designed for this purpose that may be applicable. These devices (called "breakover diodes"; "Shockley diodes", DIAC's, etc.) have"the property that for low voltage levels $(0-25 \mathrm{~V})$, they block the current. If higher voltages are impressed across the diode, theyrtoreak down" in a few misroseconds. The voltage across the diode rapidly decreases, and large currents (on the order of amps) may flow. Figure 2-28 shows circuit using a "DTAC" (G-E) to modify the wave front of a sine wave.

Another device that deserves special mention in regard to SCR triggering circuits is the "unijunction transistor" (also called a "double-base diode"). This device can be used in circuits to provide time delays, integrators, osctick lators, and level detectors. In addition, the output waveforms of relatively x simple unijunction circuits:ans reasonable approximations to the "ideal" triggering waveform for the SCR. The unifunction transistor (UST) is a three terminal device whose generalized V-I characteristics are shown in figure 2-29.

Figure $2-29$

Note that the characteristics usually presented for a UJT are the emitterbase 1 characteristics. The peak emitter-base voltages are proportional to the base-to-base voltage. The constant of proportionality " η " is called the "intrinsic standoff ratio" and usually has a value near 0.5-0.6. Once the emitter-base voltage has exceeded the peak value, large emitter currents may flow.

In order to gain some insight into the UJT characteristics, we consider the physical electron-hole model (Fig. 2-30). The bar of material between base terminals is a lightly doped, n-type semiconductor. With no connection made . to the emitter terminal, the bar acts as a resistor, usually having a resistance value on the order of thousands of ohms. The emitter terminal is connected to a p-type "dot" near the middle of the bar.

Figure 2: 30
When a fixed potential difference is applied to terminals Bl and B2 , (B positive), the potential distribution along the resistive bar appears. as in figure 2-30b. If (after having taken into account the metal-semiconductor contact potentials) the potential difference V_{EB}, is smaller than ' ψ_{y}, the p-n junction will be reverse biased, and only a small leakage current will flow. As the potential difference $V_{E B_{1}}$ is increased, eventually the p-n junction

W11 become forward biased. As holes diffuse from the p-type material into the n-type bar, they are swept toward Bl by the drift field due to the potential difference $V_{2} \mathrm{~L}$ applied to the bar. The mobile carriers then decrease the resistivity (conductivity modulation due to increased carrier density) of the bar between EA and Bl. This increases the current flow Borough E, reducing the resistivity of the bar between E and Bl , increasing the current . I_{E}; etc. Eventually (microseconds), the external circuit limits the current How, and the potential difference rn E and Bl is small. The "Resistance" or $V_{E B 1}$ of the emitter-base terming ls is typically on the order of a few $\overline{I_{E}}$
tens of ohms after the UJT has fired. If the emitter -base l voltage is decreased until the pen junction is reverse biased, the initial state (fig. 2-30b) will be restored after the carriers between Fin and Bl have been "swept out" by the electrostatic field or have recombined."

As an example of a UJT triggering circuit, we consider a circuit that could be (and has been) used as a light dimmer (Fig. 2-31).

The current through the load resistor $\left(R_{f}\right)$ can be varied by adjusting the value of the resistor "r". To analyze the circuit, we first consider the value of the resistor "r". To analyze the circuit, we first consider the voltage waveform that exists across the SCR assuming the 8CR is never triggered. This voltage is a full wave rectified sine wave as in figure 2,-32a. If ere sCR is triggered once during each hall cycle, the voltage across the sCR should appear as in figure 2-32b; We assume perfect on-off action of the diodes and the SCR for simplicity. F_{a} serves to lower the voltage $Y_{B B}$ across the USI to its normal working voltage (around 40 V). $\mathrm{R}_{\mathrm{R} R}$ and $R_{B 1}$ are chosen on the basis of the UNI specifications so as to limit the current when the UJT is conducting:

99

The resistances $R_{B 2}$ and $R_{B i}$ are usuaily much less than the pesistanoe of the
 oantially equal to the voltage acrosi r and C cofined. The oapacition voltage V_{C} continues to increase during cach half cycle an long as $V_{B B}>V_{c}$. \therefore Eventiually, the capacitor voltage reaches the value $q V_{B B}$, and the undjunction fires. η is assumed to bs 0.6 in figure 2-32c. When the fJTT fires, the capacitor discharges through the emitter terminal of the UTT, gending a current pulse into the gate of the SCR.. If the capacitor and the UJT peak voltage are large enough, the SCR will betriggered. The gate current ant pulise duration are determined by the UVT characteristics, the SCR gate characteristics, the value of $R_{B 1}$ and of course, C. Once the SCR has been tha gered, the voltage across the triggering circuit is just the forward voltage drop across the conducting SCR. Therefore the capacitor does not charge up during the remaining part of the half-cycle. At the eng, of the half-cycle, the SCR anode current goes to zero since the source *oltage goes to zero. The "SCR turns of f and the circult is prepared to repeat the cycle. This example, outlined' in the' crudeṣt of models, shows one of the many UJT's 'are utilized in trigger' circuits. The UFI is a particularly versatile device, and the student who is seriously interested in lectronics, logic circuits, or analog computing circuits is encouraged to further study this device.

It is frequently desirable to provide direct current isolation between the gate of an SCR and the grigger circuit. A pulse transformer connected to othe gate (Fig. 2-33) is one commonly used method providing the desired isolation.

As the volt-time integral of a pulse increases, the maximum $B_{2}-B_{1}$ being limited by the characteristics of the iron core, n A must marease. If n increases, more turns of thicker. wire (keeping winding resistance the same) imply a larger, heavier transformer. Also, A Increasing implies a larger transformer. Obviously the volt-time integral of one spike of the picket fence is very much smaller than the volt-time area of the entire gate pulse. The transformer flux "recolors" or is "reset" between the "spikes of the picket - fence. Hence a smaller, lighter pulse transformer may be utilized with the picket-Fence waveform than with a single gate pulse.

The triggering circuits presented in this chapter have not been presented in sufficient detail to "represent more thar the germ of an idea Even the UJT circuit, Which was primarily intended to introduce the student to the characteristics of a UJT, was modeled in only the crudest terms. A much more careful modeling would be required to design such a circuit. The basic ideas "this section on triggering circuits is' intended to convey are:
a). The designer of a trigger circuit must interpret the gate data carefully,'
b) the characteristics of the anode circuit as well as the gate circuit must be considered,
c) the trigger circuit may contain a sighificant portion (or all) of) the logic circuitry and sensing circuits used to control the SCR.
d) the trigger circuit to be used must be selected "from the infinite variety of possible trigger circuits on the basis of the specific application.

A really intelligent choice of a trigger circuit requires experience, areativity, and most important; a careful evaluation of the "desirable features" of the circuit. For example, using a ${ }^{\prime \prime}$ cket-fence triggering waveform involves

knowing the value of transformer walight reduction in terms of eircuit com-

 plexity, oobt, and reliobllity.
SCR Turn-ofe Girouits

Once the SCR has been twiggered; the gate loses control over the devioe. In order to turn the sGR off the anode current must be reduced below the latehIng current (reducing current density and the is so that. $\alpha_{1}+\alpha_{2}<1$) or by making the anode negative with respect to the cathode (instituting reverse blocking after the current transient due to carrier storage and Junction capacitance has passed). When the SCR anode circuit is connected to an AC
1 source, the alternations of the voltage"during each half cycle serve to turn off the SOR. If the SCR is connected to a DC source or if the SCR must $b \theta^{\circ}$. turned off during a half cycle of an $A C$ socree, some sort of "turn-off dircuit" must be employed.

The circuits that reduce the anode"current" to a value below the latching current arer said to "starve" the SCR. Two simple "starvation mode" turnoff circuits are shown in figure $2-35$.

Opening the awitch of figure 2-35a obviously reduces the anode current to zero. Closing the switch in Agure 2-35b bypasses the load current around the SCR: After the SCR has turned off, the switch is opened: These circuits.
are"seldom used exeept at jow power levels (leas than some hundreds of watts capability) where swituhing transistors dar take the place of the switches. A germantum tranobistor would be pneferred over a billeon tranifotor for the circuit of $2^{\prime}-35 b$ since germandium transistors have a lower collector-emitter voltage drop when ariven "on"."

Appiying reverse yoltage to the SCR until it has turned off requires circuitry more complicated than the switich used in the starvation made turnoff. Such circuits are turned "commatating circuits" because they are used to "switch" the SCR anode current. The commutating. circuit may be an integral part of the SCR application circuit. (as in the case of the phase-controlled reptifier-inverter of chapter 3) or $1 t$ may exist as an SCR appendage, functioning only to turn the SCR "off. There is a large variety of commutating circuits including a) underdamped LC circuits (Fig. 2-36a) which ate said to be selfcommutating because no other switch device is necessary, b) capacitor com- . mutated circuits (Fig. $2-36 \mathrm{~b}$) where a charged, capacitor is switched across the conducting SCR (The switch is usuaily another SCR), c) combinations of the ${ }^{-1}$ two schemes as in fägure $2-36 c$, d) external pulsed circuits such as shown in figure $2-36 d$, and so on in endless variety.

For the sake of example, we consider a partioular comutation elrautt (Fig. 2-37). This pdrticular eircuit is symmetric; however, the circuit can be made asaymmetcic by choosing SCR_{2} of a much smaller current capacity than SCR_{1} and choosing the resistor connected to SOR_{2} to have a much higher resistance value than the resistor connected to SCR.

The purpose of the circuit of figure 2-37 is tion shift the flow of current from one resistor to the other by alternately triggering the SCR's. The SCR's do not hove to be triggered periodically, but may be triggered at any time intervals that are long compared to RC. " The desired current waveforms are shown in figure 2-38.

Figure $2-.38$

We mall dofin the initial condition of thin circuit an SOR_{1} conducttng; $86 R_{2}$ forward blodilng, and aseume thit situation ham exintad for some long the period. A transient will be initiated by triggoring SCR_{2}. The expected ateady tiate is GOR $_{2}$ conducting, SCR_{1} forward blocking. The deciation to ohoose ,then initial conditions and the expected stoady state come from examining the circuit and knowing the purpose of the circuit. We had five possible steady states: 1) both SCR's conducting, 2) both SCR's blocking, 3) SCR_{1} conducts whtle $S C R_{2}$ blocks, 4) SCR_{2} conducts whilo SCR blocks, 5) the circuit might oscillate. Knowing the function of the oircuit, we eliminate possibilities 1,2 , and 5 as circuit malfunctions at beat. By examiking the circuit and observing its basic symmetry wo suppose that states 3 and 4 represent likely steady states. We arbitirarily choose 3 as the condi, tion of the circuit and will examine the transient invoived in getting to state 4. The identification of initial and stecidy states may seom ridiculously trivial in this simple circuit, however, such a process aids in understanding and modeling the circuit. We are "lucky" that the problem is so trivial, for many circuits exist having hundreds of possible steady states and simplifying the problem by choosing the appropriate states is no easy task,

Let us further assume that E is much larger than the forward: voltage deop across an SCR when it is conducting, and that the SCR current when the SCR is forward blocking is very small compared with ${ }^{E} / \mathrm{R}$. Such assumptions may permit us to treat the SCR's as perfect switches during some part of the time under consideration. We start with the initial conditions (Fig. 2 - 39).

Figure 2-39

10%

Initlally, a current $=/ R$ is flowing through R_{1} since $S_{C R}$ is conducting The only current through R_{2} would be the blocking current of $S C R_{2}$ which is negligible (by assumption). The capact tor is charged to the voltage E with the polartty show in figure 2 - 39 . Next, antiggering pulse is sent to the gate of SCR_{2} which turns on in a few microseconds. "Note that before turn-on, the forward blocking voltage on $S C R_{2}$ was $E=V_{c}$. When SCR_{2} turns on, V_{c} is applied to SCR_{1} (Fig. $2-40$), turning off SCR_{2}.

Figure $2-40$
C partially discharges through SCR_{1} and R_{1} as the mobile carriers if SCR_{1} are being swept out of the semiconductor and recombining. When SCR_{1} no longer * accepts current, the voltage across capacitor C continues to change with time constant $R_{1} C$. If the rate of change of voltage $\mathrm{dV} / \mathrm{dt}$ is below that value that will retrigger SCR_{1} (known form the SCR data sheet $=\frac{d \mathrm{~V}_{\mathrm{SCR}}}{d t} \max$), and if the capacitor is large enough that the "SCR ciurrent ceases before the voltage polarity across the SCR is in the forward direction, the $S_{1} R_{1}$ will be able to block the forward voltage, and steady state will be reached in about 5 time constants $\left.\left(R_{1}\right)=\boldsymbol{C}\right)$ is shown in fygure 2-41.

In designing the circult, the maximum $\frac{d v}{d t}$ across the SCR ${ }_{1}$ Givas phe design equation, le:

max
That the eapacitor 1 s sufficient large to turn off the SCR (absorb the reverse current during tumoff) is usually determined by trial and error. Finaliv, the turn on $\frac{d A}{d t}$ may have to be limited by placing sove inductance in serles with each SCR. It 18 assumed, that R is a known load. We have oonsidered in this example one of the simplest turn-off circults: Refergnce 3 at the end of this chapter is especially recommended for suggentions of a variety of turn-off cirquits.

Sumary
In this chapter, several models of the SCR have been presented as an aid in remembering and understanding the circuit characteristics of the SCR. gnee the SCR has been modeled, not only do the published data and specifications of the SCR become more intelligible, but device behavior not normally specified on the available data sheets can be anticipated. Triggering cirouts have been presented and discussed, not from a detailed design or analysis point of view, but to impart some idea of the kinds of things that are typically considered in choosing or designing such circuits. The unifunction transistor has been presented in some detail because it is a commonty used device in logic and trigger circuits for SCR's. The UTT's characteristics are drastically different from those of the transistor, and few students are familiar With the device. Finally, in the analysis of an SCR turn-off circuit; an important concept in modeling non-linear circuits is presented, which is, a single circuit may have a variety of possible steady-states, and the particular steady-state reached at the end of a transient depends on the initial circuit conditions and the disturbing (or triggering) signal, In this oontext, switeles that are time dependent, voltage dependent, or current dependent are considered

Henodises

1. Gifen that the doping denaities of an gCR startint at the anode aref anode $\quad N_{A}=10^{19}$ atoms/ec,
$1 \quad N_{D}=10^{15}$
gate

$$
N_{A}=10^{17}
$$

cathode $\quad N_{D}=10^{19}$
and that the $S C R$ is forward blocking with $V_{A K}=500$ volts, find the width of the depletion fegion for the blocking junction (2), and the gate-cathode junction (3).
2. 'Estimate the dielectric strength of slicon knowing that in the SCR of exercise 1 , when the SCR is reverse blocking 500 volts, the gate-tocathode voltage is 14° volts as measured by an FET VOM (input impedance $=10^{9}$ ohms).
3. Show that the rate of change of voltage across the sCR of figure $2-42$ "during "recovery" is $2 \mathrm{E} /(\mathrm{RC})$.

Problem 1

The following circuit"is a commonly used SCR "turn-aff"c cirquit in which $S C R 2_{2}$ "is trjggered in order to turn of ${ }^{\prime} \mathrm{SCR}_{1}$. You are asked to plot the appropriate voltage and current waveforms that describe the intended operation of this circuit and answer the fowlowing questions.
a) Does thè circuit design depend on the value of $\cdot R_{L}$ in ways other than selecting the current capabilities of the two SCR's?
b) Sometimes the diode is replaced by a third sCR that is triggered - simultaneously with SCR_{1}. What could be the advantage of such a scheme?
c) Will the circuit operate property the first time the source is applied or must some additional circuitry be added to establish the "proper steady state"?

Problem 2

The following circuit is proposed as an SCR turnoff circuit. SCR ${ }_{2}$ is triggered in under to turn off $S O R_{1}$. . Tater $S C R_{1_{2}}$ is triggered to turn off SCR. You are asked, to plot the appropriate voltage and current waveforms that describe the circuit operation and answer the following questions.
a) How will the diode voltage rating be related to the DC supply voltage?
b) How should the circuit be modeled if the time period between SCR firings is very long?
c) W111 the "circuit operate properly the first time the source is connected or is some additions circuitry required?

Laboratory Problem 1

We are specifically interested in SCR triggering circuits. It is desired to control the current through a load resistance R_{L}, representing 4 * 150 watt light bull (IIOV). The SCR controller is to be used to vary the "dimness" of the light from no light at all to full "lighting power" An akmination of several encyclopedias of electronicecircuits produces the "Following "tight Dimmer". circuit.

You are to design a working circuit. It is not necessary to minimize cost. The data sheets for the available diodes, SCR's, and UTT's can be obtained at the laboratory. You are specifically asked to present a "typical" firing angle vs resistance R_{a} curve, and a light bulb current vs R_{a} curve. There are two small difficulties you must consider. If you construct the above cir-. cult, it will be difficult to make oscilloscope measurements in the triggering circuit" because of grounding problems (all available "scopes" have "one input terminal grounded), and the value of R_{L} will change as a function of current.

Laboratory problem 2

Some types of telgering gircuits eqontrue to supply pulses to the' SCR even When the SCR is reverse bloekthg. Sưoh pulses add to the average powe dissipgted in the SCR sate elreuit. Furthermore, the gate character. Istics may seriousigy affect thetriggening circuit, Therefore it is desired to determine the gate V-I characterlatics whtle the SCR is reverse blocking. Will the gate cheracteristics depend on the anode-cathode voltage? Will the connection of a resistor between the gate and cathode tarminals significantly aflect the blocking capabillity of the SCR? Try to relate your angwers to SCR "models". Data sheets for a $100 \mathrm{amp}, 500$ volt SCR are available at the labor: atory.

References

1). 'J. Seymour, Semiconductor Devices in Power Engineering," Sir Isaac Pitman and.Sons, London, 1968.

This book contains a brief but clear sumary of the characteristics of. the SCR...
2). F. E. Gentry, F. W. Gutzwiller, Nick Holonyak, Jr., and E. E. Von Zastrow, Semiconductor Controlled Rectifiers, Prentice-Hall, Englewood Cliffs, N.J.; - 1.964 .

This book is an excellant and detailed review of \$CR theory and characteristics.
3). F. W. Gutzwiller, Ed., G-E SCR Manual, General Electric, Electronics Park, Syracuse 1, N.Y., 1967.

This isf a "designer's". manuai containing a good summary of device" operation, typijcal applications, terminology, and summarized spec. sheets of G-E SCR's.
4). Robert Murray, Jr.; Ed., "Westinghouse Silicon Controlled Rectifier Designèr's Handbook, West inghouse Electric Corp., Youngwood, Pa., 1964.

Similar to the GE Handbook, this handbook devotes considerable attention to heat sink specifications.
r

Chapter 3 Modeling a Line-Voltage Commutatiod Invorter

Introduction

power, oni chaptorstntroduces two jor ldede. Firat is the userulneps of
averuge values of voltrge nd eurrent in problems where the same eycle is
repoated again and agaln in matosidy state, and second is the idea, of
"Iterative modeling". where the model is succedeively rerined until the answors
yielded by the model have the required accuracy. secondary objectives of the
chapter are adscussion of Kfrchof'g Laws as applied to a ewitching circuit,
a review of the modeling idfas presented in chapter 1 , and modeling a circuit
containtng an SCR.

The Line Voltage Commutated Inverter

While "inverter" is frequently used as a generic name for "power conversion circuits, we adopt the following commonly used definitions:"
Rectifier, \quad - changes $A C$ to $D C$
Inverter \quad changes $D C$ to $A C$
Converter - changes $D C$ to $D C$ at a different voltage

A converter could be made by contecting a rectifier to an inverter. These are not universally accepted definftions but are sufficiently common and logical that their meaning will usually be clear in context.

A Line-voltage commated inverter circuit is shown in figure 3-1. The. phrase "line-voltage commutated" implies that the AC line voltage in some way turns off or switches the current from one SCR to the other. The oircuit is intended to transfer energy from the battery to the AC line. The circuit may also be used to transfer energy from the AC (ine to the battery (an efficient battery charger); and when so used is known as a "phase-controliled rectifier" because the charging current depends on the phase of the SCR triggering signals

WIth respectyto the phase of the InlIne voltage. In either case, the sCR's are
 'triggering signal may be varied from $0^{\circ}-1,80^{\circ}$ with respect to the line voltage phase. Knowing the purpose of the ghrcuta, we now begin anianalysis of the circuit operation.

Figure 3-1

Modeling the Circuit - \#1
1
Despite the fact, that the circuit contains only a few elements, the circuit operation is not obvious. We begin analysis by modeling or idealizing the circuit. The assumptions or models are spelled out so that results anconsistent with assumptions can be easily identified.
1.:. The particular voltage and current values are not specified, so we choose to work at voltages large compared to the forward voltage drop across the conducting SCR and currents large compared to the blocking (forward or reverse) current of the SCR. RMS voltages between the transformer tap and one side of 100 volts or larger and currents of 10 amps RMS or more will easily meet our requirements and give some "feeling" of the magnitudes and sizes of components. Much smaller voltages or currents would suggest transistor circuitry instead of SCR circuitry. Our first assumption is that each SCR can be modeled as an ideal switch.

Thus e_{L}, the voltaige across the inductor terminels is equal to $-L \frac{d I}{d t}$ since:
by Faraday

$$
e=-n^{*} \frac{\partial \phi}{\partial t}
$$

but $\phi=I I / n$ by assumption. and $\frac{d \phi}{d t}=\frac{L}{n} \frac{d I}{d t}, I$ and n constant therefore,

$$
e=-I \frac{d I}{d t} \text { by substitution. }
$$

3. We assume the internal resistance of the battery is negligible (zero). Normalily; the in drop due to battery internal resistance is mall compared to the battery emf. The internal resistance af a lead-acid automobile battery for example is only a few thousandths of an ohm for a voltage of 6 volts and an ampere hour capacity of $100 \mathrm{~A} . \mathrm{hr}$. At the recommended charge-discharge rate of 10 amps, the internal iR drop changes the terminal voltage by less than $\frac{1}{2} \%$.
4. We assume an theal"transformar with negligible leakage reactance and winding resistance. Examination of transformer design methods suggests that the impedance due to leakage reactance and winding resistance combined is usually

Lens than $g \%$ p $($ for unit - ret 3 p, 404). We neglect tho voltage danone due
 negligible and the trangformer Iron doon't daturate, we on use the ideal tring-t former relation:

$$
\int N \cdot d=\sum_{j} n_{j} i_{j}
$$

where the current directions are defined as in figure $3-2$;

5. Finally, we assume that the AC line is "stiff", that is, has negligible source impedance.

Now that the elements have been idealized, we begin to analyze the modeled circuit." We first label the voltages and currents of interest for ease ing iscession (Fig. 3, - 3).

Figure 3 - 3

$$
128^{\circ}
$$

Nirehorfis voltage equationí
g) $000+0_{0}$
d) 8 o 0
c) $0_{3} 0_{0}-13$
kirehoff's current equation
f) $1_{b}+t_{b}=1_{3}$

There equations are not sufficient to solve the circuit". We must have additional information as to the switch behavior. Not only must we fund a way" 'of expressing the electrical characteristics of the switch which are:

$$
\begin{aligned}
& \text { Sopen }-e_{s}=\text { anything, } 1_{s}=0, \\
& \text { s closed }-e_{s}=0 \quad, 1_{s}=\text { anything; }
\end{aligned}
$$

but we" must know when each switch is open or closed. "Examining the circuit of figure 3-1, some facts become clear. *

$$
\begin{aligned}
& \frac{k_{2} \leq 0}{1} \text { or } \mathrm{SCR}_{2} \text { is reverse blocking } \\
& 4_{3} \geq 0
\end{aligned} \text { or } \mathrm{SCR}_{3} \text { is reverse blocking. }
$$

Also, considering the loop composed of e_{2}, θ_{3}, s_{2}, and s_{3}, it is clear that
s_{2} and s_{3} cannot simultaneously be closed, because one of the SCR's (depending on the polarity of $e_{2}+e_{3}$) will be reverse biased and will therefore turn off. Furthermore, if the inductance is assumed large enough to maintain a nearly constan current through the battery (recall there is no R in the circuit, therefore $d i / d t=-\frac{E}{L}$ and a large 1 implies a small $\left.d i / d t\right), S_{2}$ and S_{3} cannot
afmultenofuidy be open. In fact, S_{2} and 8_{3} cannot both be open provided only that the inductance 18 Inge enough to prevent the current if from decaytho to zero. We nave conte across another possibly amplifying assumption.

6. Assume $i_{b} 18$ approximately constant because L is large.

The remaining two witchrlates, s_{2} closed with s_{3} open and s_{2} open with S_{3} closed, seem reasonable. Once a switch has closed, the inductor will assume Whatever voltage is necessary to keep the current flowing (with value I_{b}) through the switch. Therefore the switch will remain closed regardless of voltage e_{2} and e_{3} until the other switch is closed. Then it must open. When can a switch be closed? SCR_{2} (assumed open) is forward blocking throughout the ${ }^{\text {: }}$ first 180° of $e_{2}+e_{3}$

Voltage across S_{2} if S_{2} is open and S_{3} is closed.

Therefore S_{2} can be closed only within $0^{\circ}<\theta<180^{\circ} \quad$ From $180^{\circ}<\theta<360^{\circ}$, the SCR_{2} is reverse blocking and cannot be triggered. Similarly, S_{3} can be closed only within $180^{\circ}<0<360^{\circ}$.

We are now in a position to begin plotting voltage and current waveforms. The waveforms will be considered for three different "firing angles" (α) at which SCR_{2} is triggered, namely $45^{\circ}, 90^{\circ}$, and 135°. Firing angles of 0° and 180° will not be considered because $e_{2}+e_{3}$ will not be large compared to the forward voltage drop across the SCR and SCR turnoff will be more complicated. Thus at 0° and 180° firing angles, modeling the SCR as a switch would be unreal-: fistic. We begin (fig. 3 - 4) by plotting the currents using equations (b), (f), the switching sequence, and the constant current $i_{b}=I_{b}$ whose value is not yet known. Switch 2 is closed firing angle a. I_{b} flows through s_{p} until s_{3}

1. cloned at an $0+180^{\circ}$. Note that the line current of the transformer (1_{i}) is o squame wave while the voltage in ta ne wave. this mean the centertap gide of the transformer does not look anything like a linear "Impedance." "

Next we consider the voltage waveforms. Using equations (d) and (e) and knowing that of or 0_{3} exp when the appropriate ewtoh is closed, we plot e_{0} We amp lot by solving equations (d) and (e) to eliminate e ${ }_{0}$

$$
e_{2}+e_{3} e_{82}-e_{s_{3}}
$$

and knowing when $e_{s_{2}}$ and θ_{3} are zero. We note that the above equation is just. the Kirchoff voltage sum around the loop containing, the two switches and the centertap transformer winding.

We have yet to determine the values of I_{b}, e_{L}, F_{b}. Consider first the determination of E_{b}. From equation (c); we can relate the voltages F_{b} and ${ }_{L}$ to e_{0}. Further, we can use the fact that $e_{L}=-L \frac{d i}{d t}$ for e_{L}. In terms of the polarities assigned in figure 3-3:

$$
e_{L}=-L \frac{d i_{b}}{d t}
$$

and

$$
e_{0}=e_{L}+E_{b}=-L \frac{d i_{b}}{d t}+E_{b}
$$

Obviously i_{b} cannot be absolutely constant regardless of how large L might be. However, it will not disturb any of our analysis if we allow i_{b} to fluctuate by some small amount (such as a fraction of a percent of the value X_{b}). We can rearrange the above equation and integrate.

$$
\int_{t_{1}}^{t_{2}}\left(e_{0}-E_{b}\right), d t=-L \int_{i_{1}}^{i_{2}} d i_{b}=-L \Delta i_{b}
$$

$$
\frac{1}{\omega} \int_{0_{1}}^{\theta_{2}}\left(e_{0}-E_{b}\right) d \theta=-L \Delta i_{b}
$$

Consider the form of e_{0} in figure $3-4$ for the firing angle $\boldsymbol{a}=45^{\circ}$. Divide the cycle into two parts: $45^{\circ}<\theta<135^{\circ}$, and $135^{\circ}<\theta<360^{\circ}$.plus $0^{\circ}<\theta<45^{\circ}$. In the region $45^{\circ}<\theta<135^{\circ}, \Delta i$ is changing from its original value, $i_{b_{45}}$ to a new
value 1 b135- The pollartbystand amount of the change depends on the value of

$A h_{2}=i_{0}$ as a o in ix

 back to fits original value the beginning of the cycad le This ts obvious from the definition of a cyclic process, that is ${ }^{*}$.
Definition: In a cyclic process, $f(\theta)=\dot{f}(\theta+2 \pi)$ for any and all variables. In our set of equations, there is only one value of F_{b} that will satisfy the cyclic requirement. We could find such a value for each a and determine the voltage waveform of ${ }^{*}{ }^{e} \mathrm{I}$, I_{b} is not determinable by any obvious means. Should. E_{b} be different from the value such that $\Delta i_{2}=-\Delta i_{1}$, the current would "ratchet" toward plus or minus infinity. We would no longer have a cyclic process "or a - steady state. In actuality, a steady state and "a" cyclic process would be attained if we considered the iR and other voltage drops" in the circuit that increase with current. The circuit current value is determined by these drops and the value of F_{b}. We suspect that if E_{b} has in fact the value calculated above ignoring iR drops, I_{b} will be 出ero when $i R$ drops are considered.

Average Voltages and Currents

Before considering resistances and stray inductances all over the circuit, we pause to consider a shortcut, both conceptual and effortwise. Reconsider equation (c), that is:

$$
: \& p
$$

$$
e_{o}=e_{L}+F_{b}
$$

- where e_{o} is known to a first approximation. Knowing that the average voltage across an inductor in a cyclic process must be zero (see the following digression), we average the equation over a cycle.
\qquad

$$
\begin{aligned}
& \frac{1}{\pi} \int_{0}^{2 \pi} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi}\left(e_{t}+E_{b}\right) d \theta \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} e_{0}^{2 \pi} d \theta=\frac{1}{2 \pi} \int_{e}^{2 \pi} e_{2}^{2 \pi} d \theta+\frac{1}{2 \pi} \int_{0}^{\pi} E_{b}^{\pi} d \theta \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} e_{0}^{2 \pi} d \theta-E_{b}
\end{aligned}
$$

Furthermore, because of the repetitive nature of e_{0} during a cycle (refer to figure 3 - 4),

$$
\begin{aligned}
& \left.=\frac{\rho_{m a n}}{T} \cos \theta \right\rvert\,=E_{b}
\end{aligned}
$$

This simple expression gives the same value of E_{b} that would have been found by requiring Δi_{1} to equal Δi_{2}.

Digression
In a cyclic process, all ideal inductors, linear or nonlinear,
must have a zero cyçlic average voltage across their terminals. Consider for example an iron-core inductor (a more complicated case than an air-core inductor). First we topologically "pull out" the winding resistance (Fig. 3 -5).

fIgure 3-5

By Faraday's law, $e_{L}=-n \frac{d \phi}{d t}$."The iron core has ar flux ϕ associated with the value of the current and the history of the carr. The $\phi-I$ curve of the from is shown in figure 3.-6.

Figure $3,-6$
Suppose at the beginning of a cycle, $\phi=\phi_{1}$ and current I_{1} is flowing. During the cycle, the flux undergoes some excursion and stops at flux value ϕ_{2}." In a cyclic process, all variables must return to the same. value at the end of the cycle as at the beginning. In the example of figures $3-5,6 ;$ if $\phi_{2} \neq \phi_{1}, i_{2} \neq i_{1}$. If the process is cyclic, $* e_{L_{1}}=e_{L_{2}}, \phi_{1}=\phi_{2}$, and $i_{1}=i_{2}$.

Thus

$$
\int_{\text {GYGLL }} d t=-n \int_{h_{1}}^{A} d \phi=-n\left(\phi_{2}-\phi_{1}\right)=0
$$

and, dividing by the period of a cycle;

$$
\frac{1}{T} f e_{L} d t=\frac{O}{T}=0, \quad=\text { average value of } e_{L}
$$

or changing variables;

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} e_{4} d \theta=0 \quad: \text { average value of } e_{L}
$$

Thus the cyclic average of e_{L} must be zero. Writing Kirchoff's voltage law for the given loop;

$$
e_{i n}=i R+e_{L} \text {. }
$$

Averaging over a cycle:
$\frac{1}{2 \pi} \int_{0}^{2 \pi} e_{i n} d \theta=\frac{1}{2 \pi} \int_{0}^{2 \pi} i P_{d} \theta+\frac{1}{2 \pi} \int_{0}^{2 \pi} e_{l} d \theta$

Note that it is not necessary for the average value of ein or 1 to be
 outside the torminals ot the "Ideal" inductor to use the "zero cyclite averuge of the voltage" shorteut, and the argument is only valid when the Circult varlables describe'r repetitive cycle (steady state).

The bathery vollage and the voltape of, are ploted in tigure 3-7.

bablemy rhanere

Pigrure 3-7

Modeling the rireuil. - Ife
I_{13} can be calculatod usims the same urlitice usod in soparating the winding resistaneo from the ideal induel.or. We move the forward voltage drop across the ard (aboul I volt) around the rirenit loop to the battery (rig. $3-8$). The battery internal resistancer the inductor winding resistance, the resistance of one side of the centertapped transformer winding rosistance, and the transformer line-side winding resistance are all lumped in a single resistor next to the bathery. Note that the transformer leakage reactance is ignored because i_{b} is constant throughout most of the eyele so that leakage $\frac{d i}{d t}$ will be negllgible except during the sele switehing.

$$
\mathrm{R}=\mathrm{R}_{\text {transformer }}+\mathrm{R}_{\text {inductance }}^{\prime}+\mathrm{R}_{\text {battery }}
$$

Figure 3-8

Because the current I_{b} is constant, the iR drop is also constant.' Nothing changes the analysis we have made so far. We merely apply Kirchoff's and Ohm's law to the loop containing the battery E_{bb}.

$$
\begin{aligned}
E_{b}-S C R \text { drop } & -E_{b b}=I_{b} R \\
I_{b} & =\frac{E_{b} \cdot \operatorname{SCR} d r o p-E_{b b}}{R}
\end{aligned}
$$

Obviously e_{o} and E_{b} are no longer physically measurable quantities because of the fictional R.

Modeling the Circuit - \#3

It is a common occurrence in inverter and phase controlled rectifier circuits that the transformer leatage raactance is not negligible. This leakage reactance limits the rate of "change qf current in the SCR's (a very favorable effect) and delays the actual turn-on time of the SCR's an amount" " (commutation angle) in addition to the firing angle α. The leakage reactance of concern is associated with the center-tapped side of the transformer. The leakage reactance is "pulled out". of the ideal transformer as a pair of lumped inductors (Fig. 3-9).

Figure 3-9

Because I_{b} is still assumed nearly constant, the leakage inductance have no effect whenever one switch is open and the other switch is closed ($\mathrm{L}^{\mathrm{di} / \mathrm{dt}} \approx 0$). We must revise some of our original thinking regarding the possible states of the switches. When SCR_{2} is closed, the current. $-\mathrm{i}_{2}$ increases gradually, its rate of change limited by the leakage inductance. While $-\mathrm{j}_{2}$ increases, i_{3} must gradually decrease, its; rate of decrease limited by the leakage inductance. Thus, during switching, both SCR's are conducting.

We express our concept more precisely:

$$
I_{b}=\text { const }=i_{3}-i_{2},
$$

differentiating with respect to time

$$
\frac{d i_{3}}{d t}=\frac{d i_{2}}{d t}
$$

assuming the two leakage inductance have the same value, the voltage magnitudes across each inductance will be the same since.

$$
\left.\begin{array}{c}
e_{l 2}=-L_{\text {leak }} \frac{d i_{2}}{d t} \\
e_{l=}=+L_{\text {leak }} \frac{d i_{3}}{d t}
\end{array}\right\}
$$

during the time both s_{2} and s_{3} are closed

We conslder the meaning of these equations by graphing e_{2}, e_{2}, i_{2}, and i_{3} during a switching operation. We got $-i_{2}$ instead of i_{2} to shpw the forward current through SCR_{2} (Fig. $3-10$): Ais sume initialiy SCR_{3} is conducting (S_{3} closed) and at firing angle α, SCR_{2} is triggered (S_{2} closed). When S_{2} closes, the current $-i_{2}$ increases while i_{3} decreases as the current is transferred from S_{3} to S_{2}. Initially, $i_{2(t 1)}=0$. After switching $i_{2}(t 2)=-I_{b}$. The voltage across the leakage inductor is \dot{e}_{2}. The switching time $\left(t_{2}-t_{1}\right)$ must last until $\frac{1}{\mathrm{~L}} \int_{\mathrm{t} 1}^{\mathrm{t} 2} \mathrm{e}_{2} \mathrm{dt}=\mathrm{I}_{\mathrm{b}}$. When the switching time ($\mathrm{t} 2-\mathrm{tl}$) is expressed as an angle r, it is known as the commutation angle. The value of the angle r depends on the firing angle α beqause e_{2} is small for $\alpha^{\prime} s$ near 0° or 180° (giving larger γ_{s}) and increases to a maximum at $\alpha=90^{\circ}$ (giving the smallest γ).

The voltages dropped across the leakage inductances subtraft from e_{o} and thus modify the value of the battery voltage. We correct figures $3-4$ and
$\therefore 3-7$ taking into account the leakage inductances in figure 3-12. The : analysis betweer switching times remains precisely the same. The model we have now analyzed is shown in figure 3-11.

Figure 3-. 11

Figure 312

Lot as review the assumptions made in devising model \#1 of the circuit. 1). All through the andyais we have asmumed large currents compared to the SCR blocking current and large voltages compared to the SCR forward voltage drop during conduction. We have relaxed the requirement that the BCR forward voltage drop be negligible in model \#2. 2) We have taken into account all winding resistances. It is also not necessary that i, be a linear inductor. (avoided in the "averaging trick"). 3) We have accounted for the internal. resistance of the battery. 4) We have also considered the transformer winding resistance and the leakage inductance on the center-tapped aide in model \#3. We have not considered the leakage reactance on the line side. 5) We. still require the line to be "stiff" so that voltage harmonics ("messing up I the sine waveshape") do not occur because of the non-sinusoidal current.
6) We still require I, to be large enough that i_{b} can be considered constant. We could further relax the assumptions using more detailed circuit models, however, we stop at this point having shown the methods of refining the model. and because further refinements are more complicated (but certainly possible).

Summary

[^1]- valuable in design and synthosin of circuits as well as analysig. In addition, Lhe required sophistication of the model or the next atep in the analyaia can be indicated by numerical calculation of given or ostimated circuit parameters or by laboratory experiment. Inus the analysis is orly as complicated as is necessary for the given purpose. In each step, the preceding analysis gives the engineer a basis from which to work and extend his knowledge in that each model can bo checked and compared to physical reasoning. If an error is made, one need only go back to the previous models and try again, therefore, past efforts are not lost in the case of an error.

In contrast, the approach of including all possible circuit elements in the circuit model and writing Klrchoff's loop and node equations all over the place has serious disadvantages. Such a method is an all-or-nothing method. If the equations become so complicated the engineer cannot solve them, there is no obvious next step. If an error is made, one must begin again and examine * each step because there are few or no physical reasoning checks along the way of manipulating the many equations. After (and if) an answer 'is'found, some sort of simplified modeling is still necessary to assure the correctness of the answer, and finally, more elements than necessary may have been included in the (ircuit model, adding unnecessary complexity to the solution.

The "shortcut" of averaging voltages over a full cycle, presented in the circuit analyais, allows one to eliminate the inductors and tnansfomers (exercise 2) from the voltage loop equations. A similar "shortcut" for current equations and capacitors exists (exercise l). In the particular problem solved in this chapter, the averaging scheme enabled us to avoid solving differential equations consisting of Kirchoff loop equations where the coefficients varied as a function of time (the switches).

Exercises

1. Prove that the average cyclic current through a capacitor must be zero What about the case where aurface leakage currents exist around the expacitor plates (capacitor current "leakage")?
2. Show that the Faraday voltage at a transfompr terminals must have a zero cyclic average regardless of core lomand nonlinear transformer loads (like diodes, etc.). Calculat the fiverage primary current in the following circuit. Assume the iron core dbes not saturate.

Problem 1

Determine the maximum power dissipated in each SCR of the phase-controlled rectifier diagrammed below so that appropriate heat sinks for the SCR's may be chosen

Winding resistance of inductance $L=2.0 \Omega$
Total winding resistance of the center-tapped winding $=3 \Omega$.
Total leakage Inductance of the center-tapped winding $=10 \mathrm{mh}$.

Problem 2

Consider a 3 phase half-wave controlled rectifier

Assume $I_{\text {, }}$ so large that $I_{\text {a }}$ is constant throughout a cycle.
The transformer leakage reactance is not negligible resulting in a commutation angle $\left(\right.$ about 5°).
a) Plot $I_{D 1}, I_{D 2}, I_{D 3}$ on the same graph as a function of time.)
b) Plot, I_{R} (current through the load resistor R) as a function of firing angle arrow 0 <ark.

As we can see how to "Invent," a bridge rectifier (angle phase) from examining a half wave rectifier.

so we can see how the "Gractiz circuit" was invented for three phase (maybe).

a) What is the firing order (sequence in which the thyristors are
(triggered) of the thyristors?
b) It is claimed that $I_{n}=0$ and that the neutral wire can be removed. Is this true? If so, what does e look like (neglect leakage reactane for simplicity)?

Lab Problem 1
A phase controlled rectifier is being designed (circuit below). A working model could be thrown together in the laboratory to check the design using a「110/220 V center-tapped 1 KVA power transformer, an assortment of available SCR's, a large variable inductor and assorted resistors. Your specific problem concerns the SCR triggering circuit. How precisely must the SCR triggering pulses be spaced, that is, if SCR_{2} is triggered 175° after SCR_{1} instead of 180°, what happens? How about 170° or 150° ? Because precise trigger circuits tend....
must determine the specific effects such a "disymmetry" in the firing angles of the SCR's will cause so that you could make an intelligent selection of trigger circuits for a spectefic application. Show the critical waveform changes', effi-i ciency changes, and component rating changes that would be caused by an unsymmetric triggering of the SCR s . As an additional question, how should the transformer design be improved or changed from that of an ordinary power transformer if the transformer is to serve in a phase-controlled rectifier? .

Lab Problem 2
The following inverter circait is useful at high frequencies where the physical size of L is not so formidable. The circuit operates best for ismall values of R. .The basic idea is that $S C R_{1}$ is triggered. When the current pulse through R has ended, C is charged. Then SCR_{2} is triggered. C discharges through R giving a current pulse in the other direction. The alternating current pulses occur at the "frequency", or more precisely, the repetition rate of the SCR. gate pulises.

Plot the important current and voltage waveforms that describe this circuit assuming a "negligibly small" R. Answer the following questions.
a) How small is "small R "?
b) What does "operates best" mean?
c) What happens if SCR_{2} fires while SCR_{1} is still conducting?
d) Does the magnitude of the output current depend on the triggering repetition rate?

$$
148
$$

e) What is the higheat frequency at which circuit can operate for a given set of values of L, C, and R ? What is ultimately the limiting factor on increasing frequency?

1/8W DC souncer

Chapter 4 Thermal Charactorlstics of Materials

Introduction

The bastc principles of heat transfer ace reviewed in this chapter with special emphasis on heat-sink considerations. rour different kinds of modelexamples are presented. In deriving an electrical model of a heat flow problem, we consider "modeling by analogy". Considering the steady state and transient, heat-flow and temperature distribution in a material, we use a "Iumped paramater model" of a distributed or continuous system in which the material is artiftcially broken up in to many pieces which are considered as individual units. We use the "superposition of models" in a linear system when considering the transient thermal behavior of a material where a model ${ }^{\circ}$ for heat conduction is superposed : on a model of heat capacity. Finally, a very "specialized model" of the thermal. characteristics of an $S C R$ under conditions of a particular (but common) current waveform is condidered.

Steady-state Constant Heat Flow
The heat generated in a semiconducting device such as a diode or SCR must travel from the crystal through some bonding material, through the case of the device, possibly through a mechanical fastener system, through a chassis and/ or heat-sink, and is finally dispersed in some environment. Ihe temperature of the crystal depends on the thermal properties of these "components" of the syatem and on the ambient temperature of the envinonment: " We frequentily lave a choice of the size and type of heat-sink or chassis ard the type of fastener aystem that is to be used in a practical situation. [n order to be able to make an intelligent choice of these "thermal system" components, we consider in some detail the thermal properties of these components and the way they are commonly specified.

We begin by reviewing the simplest case, that is, steady state, constant, unidirectional heat flow by conduction through a homogeneous material. Recall from the elementary physics of heat flow that the rate of flow of heat energy : passing through a homogeneous material (steady state or not) is proportional to the rate of change of temperature with distance (Fig. 4-1).

N

$$
\begin{aligned}
& H=-k A \frac{d T}{d x} \\
& H= \text { power or heat flow }(\text { watts }) \\
& A= \text { area } \\
& T= \text { temperature } \\
& x= \text { distance in the direction }(\mathrm{m}) \\
& \text { of the heat. flow } \\
& \mathrm{H}= \text { constant }=\text { "thermal conductivity" } \\
& \text { (watts } / \mathrm{m}^{\circ} \mathrm{C} \text {) }
\end{aligned}
$$

H is assumed uniform over A.

Figure $4-1$
" F " is constant and has the same value for any x such that $0<x<L$ because: the flow of heat is in the x direction (no heat iss flowing up, down, or to the sides because of the uniform distribution of H and T over the area A), and
in the steady state, the temperature distribution and values do not change (for constant H) thus no heat is "used" to change the temperature of the material as a function of time.

It is a trivial matter to integrate, the hat conduction equation under the given conditions.

$$
3
$$

$$
H=-k A d T / d x
$$

$$
H d x=-k A d T
$$

143.

Consider the first lab "a",

$$
H \Theta_{a}-T_{2}=T_{1}
$$

The next slab "b", yields a similar equation,

$$
H O_{b}+T_{y}=T_{2}
$$

which may be simultaneously solved with the previous equation to eliminate:

$$
T_{2}, \text { yielding }
$$

$$
H \theta_{a}+H \Theta_{b}+T_{3}=T_{1}
$$

for the slab "c",

$$
H \Theta_{c}+T_{4}=T_{3}
$$

yielding

$$
H \theta_{a}+H \theta_{b}+H \theta_{c}+T_{4}=T_{c}
$$

for the slab " \downarrow ",

$$
H \theta_{d}+T_{5}=T_{3}
$$

yielding

$$
\int_{\text {or }} H \theta_{a}+H \theta_{b}+H \theta_{c}+H \Theta_{d}+T_{5}=T_{1} \quad \text { etc. }
$$

$$
\underset{\ddots}{H}\left(\theta_{a}+\theta_{b}+\theta_{c}+\theta_{d}\right)=T_{1}-T_{5}
$$

We note that the equation relating power and temperature difference for the series of. four slabs of heat conducting material is similar to the equation relating current to potential difference for a series of resistors (Fig. 4-3). We are encouraged (being electrical engineers) to make an electrical analogue to ℓ the heat flow system:
\star

$$
153
$$

Figure $4-3$

The reason for calling θ the "thermal resistance" is now apparent. The case of three dimensionpl. heat flow is slightly more complicated than the one dimensional problem we have considered, however, if we dhoose areas in the three dimensional problem which are normal to the heat fiow direction, we can intuitively see that the same general form of solution, i.e.

$$
\mathrm{P} \theta+\mathrm{T}_{2}=\mathrm{T}_{1},
$$

will always result over any temperature range for any material that can be said to have a constant thermal conductivity " k ":

The notion of thermal resistance can be used in almost all practical semiconductor power dissipation-heat flow problems for the elements of the thermal system from the crystal' where the heat is generated to the heat-sink. The heatsink, however, is \& very complicated element of the system which transfers heat to the environnent by means of convection, radiation, and conduction. Commonly used, commercialiy available, convection cooling (and forced air flow) heat-sinks are specified in two ways. A graphical curve of temperature difference between the mounting surface of the semiconductor's case and the ambient air temperature versus "cooling power" may be presented as shown in figure 4-4. These eurves

$$
151
$$

for the various heat-sink sizes and conflgurations are the result of empirical test. The "natural donvection" characteristics of figure $4-4$ could be roughly approximated by a straight line (dashed line, Fig. 4-4). The slope of the atraight line $\left(\frac{T_{1}-T_{2}}{H}\right)$ is known as the "thermal resistance of the heat-sink". Thus, despite the fact that the heat-sink cools by means other than conduction, it can be said to have an empertcally measured thermal resistance.

Figure 4-4
The fact that in general, an object placed in air transfers heat by conduction, convection and radiation approximately proportional to the temperature difference of the object and the ambient air temperatures is called "Newton's law of cooling".

As an example of using thermal impedances, consider a stud mounted SCR on. an anodized aluminum heat-sink. The thermal impedances for the components of the thermal. system are obtainable from man'acturers' data sheets or could be measured in the laboratory. . The question is, "What is the maximum power the SCR can be permitted to dissipate?"

$$
150
$$

G1ven:

Maximum allowable junction temparature (I_{j}) $=100^{\circ} \mathrm{C}$
Maximum ambient temperature $\left(\mathrm{T}_{\dot{a}}\right)=25^{\circ} \mathrm{C}$
0_{j} - Junction to mounting stud $=1.5^{0} \mathrm{C} /$ watt
$\theta_{B^{-}}$- stud to heat-aink when the stud is fastened with the maximum
permissable stud torque (dry threads)
$=0.35^{\circ} \mathrm{C} /$ watt dry
$=0.25^{\circ} \mathrm{c} /$ watt using "Joint compound"
$=3.0^{\circ} \mathrm{C} /$ watt . using insulating
mica washer with joint compound.

$$
\theta_{\mathrm{h}} \text { - heat sink } \quad 1.7^{\circ} \mathrm{C} / \text { watt }
$$

We shall consider the case where the $\mathcal{G C R}$ is mounted "dry".

$$
\begin{aligned}
& H\left(\theta_{j}+\theta_{s}+\theta_{h}\right)=T_{j}-T_{a} \\
& H(1.5+0.35+1.7)=100-25 \\
& H=\frac{75^{\circ} \mathrm{C}}{3.6^{\circ} \mathrm{C} / \text { wart }} \approx 21 \text { WATTS }
\end{aligned}
$$

Unless the $S C R$ and heat-sink mounting instructions are followed with care, the rated thermal impedances will not be attained. Mounting a slud-mounted SCR wil1 usually involve a torque wrench. Press-fitted SCR's require a close adherance to dimensional tolerances ($\pm .005$ is typical). Other types of SCR's require specfal mounting härdware such as the GE Press Prifi or IR "Hockey Puks". Any surface finish of the heat-sink such as anodizing or paint should be removed directly under the SCR, and no burrs or knicks mad be permitted under the mounting surfaces. Heat-sinks cooled by naturál convection are designed to have their fins placed vertically. If the heat-sink is mounted horizontally or near other objects that might restrict the air flow or heat the air, the heat-sink must be de-rated: If several semiconducting devices are to be mounted on the
same hent-sink so as to maintain uniform semiconductor temperatures, the devices cannot be equally spaced since as the air warms and rides along the heat-sink fins the top of the heat-gink will not be cooled as effectively as the bottom. Heat-sinks are made of a variety of alloys, the particular material dependIng on the application. Copper is frequently chosen where the size (volume) of the heat-sink ls important. Magnesium may be chosen where weight is a critical. factor. Aluminum is usually chosen when cost is important. Aluminum heat-sinks are available with clean surfaces or with an anodized surface. Anodizing increases the thermal emissivity of the heat-sink with a thin coating on the aluminum. Painting an aluminum heat-sink with an oil base paint (any color") has about the same effect as anodizing on emissivity, however, the paint layer acts as an insulator in terms of thermal conduction. If the heat-sink gets rid of heat by a convection process, paint is inferior to a black anodized coating. If the heat-sink primarily radiates (as in a vacuum), paint may be used effect ively. Commercially available heat-sinks frequently have clean, bright, surfaces. rt is frequently cheaper in terms of dollars cost/watt dissipation to use a larger unfinished heat-sink than a smaller, more expensive, anodized heatsink.

'Transient Heat l' low

The fact that the temperature of a device that is dissipating power takes some time to reach steady state becomes important ip fast pulse circuits (where "fast" means pulse times shorter than the time required for the device to achieve thermal equilibrium) and in cyclic processes where the power dissipated varies as a function of time within the cycle. Consider figure $4-5$ in which the power dissipated as a function of time is typical for the $\mathrm{SCR}^{\prime} \mathrm{s} \ln$ " the inverter cir cults of the previous chapter., such a curve would result in the case of constant. forward current through the SCR cor half'a cycle followed by a half cycle of
negligible power dissipation while the SCR is blocking.

If the device ware operated for a long time at the peak power level, a device Junction temperature T_{p} could be reached for a given thermal system. If the repetition rate of the circuit is increased so that the period of a cycle was very short compared to the time required for the system to reach thermal steadystate, the junction-temperature would be T_{a} as calculated from the average power dissipated during a period. For time periods in between these long and short extremes, the peak junction temperature lies in between T_{p} and T_{a}. In many practical situations, knowing fust where between T_{p} and T_{a} the actual peak junction temperature will de makes a sigaificant difference in the choice of an 'SCR' or the components of its heat-dissipation syster.

$$
15 y
$$

The reason that some time in required for the thermal system to reach equallibrium or steady-state is related to the "heat, capacitance" of the system. We know from basic physics that if we apply thermal energy uniformly to a piece of material (a "slab") that is thermally isolated from tho surrounding world, the temperature of the material will increase in proportion to the energy supplied (Fig. 4-6).

$$
\begin{aligned}
\Delta \mathrm{E} & =\int \mathrm{H} d \mathrm{t}=\mathrm{cm} \mathrm{~A} \mathrm{~L} \\
\Delta \mathrm{E} & =\text { energy supplied } \\
\mathrm{H} & =\text { power supplied } \\
\mathrm{t} & =\text { time } \\
\mathrm{C} & =\text { specific heat - depends on material } \\
\mathrm{m} & =\text { mass of slab } \\
\Delta^{\prime} \mathrm{I} & =\text { resulting temperature change. }
\end{aligned}
$$

$$
\text { and } m: \oint A^{\prime} d x
$$

$$
\begin{aligned}
\boldsymbol{S} & =\text { density of material } \\
A & =\text { area of slab } \\
d x & =\text { slab thickness }
\end{aligned}
$$

$$
\text { Figure } 4-6
$$

The quantity $\mathrm{cm}=\mathrm{C} \mathrm{gA} \mathrm{Ax}^{\mathrm{A}}=\mathrm{C}$ where " C " is known as the "heal capacity" of the slab: Note that the temperature is uniform throughout the slab (steadystate or else k, the thermal conductivity is infinite). 'the heat capacitance has an analogy in the electrical system. comparing the analogous quantities:

$\Delta E=\int H d t=C \Delta T$
$\Delta T=\frac{1}{c} \int H d t$
$\Delta Q=\int I t=C \Delta V$
$\Delta V=t / I d t$

Note that the equations are analogous term by term. We have not only shown that electrical capacitance is analogous to heat capacity, but that electric charge Q is analogous to thermal energy E.' clearly', analogous does not mean "equal to"!

To model a' real material, both the specific heat and the thermal conductivity must be considered. We must find a way to add together or superpose these two models. In the case that the slab is very thin so that the thermal capacitance and resistance are "small." such that the temperature variation across the slab is small compared to the required temperature accuracy, we make a first approximation as follows. Represent the thin slab as a three layer sandwich as shown in figure $4-7$.

The end materials have zero herat capacity and have thermal con:. ductivity "k".

NJU The middle material has infinite thermal conductivity and has specific heat c.

The rationale of such a model depends upon ' T_{1}, T_{2}, and T_{3} not being very different. Regarding heat capacity, as heat energy is applied to the slab, the temperatures change, and T 1 will change in a different manner than I_{3}. If T_{1} and Ψ_{3} are nearly the same, I_{2} will be some sort of "average temperature" of
the whole slab and will to a firat approximation describe the variation of all three temperatures as functions of time as energy is added to or removed from the slab. Also, regarding the thermal resistance model, if the temperatures are nearly the same', the temperature distribution in the slab can be modeled by two straight, lines (from $\mathrm{T}_{1}-\mathrm{T}_{2}$ and $\mathrm{T}_{2}-\mathrm{T}_{3}$) to a reasonable accuracy. Furthermore, if T_{2} is nearly the same as T_{1} and T_{3}, the slab must be close to its steady-state condition for the amount of heat flow through the slab, and and thus the thermal resistance model which has been considered for steadystate is valid.

We must define what we mean by T_{1}, T_{2}, and T_{3} being "nearly the same". Because of the variety of temperature scales available (Celsius, Farhenheit, Kelvin, Rankine) and the particular definition relating to freezing and boiling water of the commonly used Celsius (centigrade) scale, a per-cent type definition such as $\frac{" \mathrm{~T}_{3}-\mathrm{T}_{1}}{\mathrm{~T}_{3}}<.05^{\prime \prime}$ is not very meaningful. We could compare the temperature difterence across a slab to the accuracy we require, for example, we could fequire "T3-T, $\mathrm{T}_{1} 3^{\circ}$ c" where β is some factor relating the error to the temperatura distribution in the slab, but it is not obvious how β is to be determined. Thus it appears that before the accuracy question can be resolved, the temperature distribution must be found.

In tigure 4-8, the equations describing the behavior of the thermal model and the analogue of the thermal model are developed side-by-side.

WHERE $R=\frac{k A}{\Delta x}$

$$
C=\cos A \Delta x
$$

$\$$

$$
\begin{array}{ll}
H_{1}=-\frac{K A}{\Delta W / 2}\left(T_{2}-T_{1}\right) & I_{1}=-\frac{l_{2}\left(V_{2}-V_{1}\right)}{H_{2}=-\frac{k A}{\Delta x / 2}\left(T_{3}-T_{2}\right)}
\end{array} I_{2}=-\frac{2}{k}\left(V_{3}-V_{2}\right)
$$

CENTER MATERIAL (USING CONSERVATION OR

ENEROY

$\Delta E=\left(H_{1}-H_{2}\right) \Delta t=\operatorname{cs} A \Delta x \Delta T_{2}$

Figure 4-8

If we are given sufficient boundary conditions, such as T_{1} and T_{3} as functions of time, the other parameters (such as H_{1}, H_{2}, T_{2}) may be found as functions of time using the equations shown in figure $4-8$.

We again raise the question of accuracy of the model. Suppose that during some transient process the temperature distribution in a homogeneous material is given by the solid curve in figure 4-9.

The temperature distribution throughout the material might be estimated using the model of figure $4-8$ as the upper of the dashed curves in figure $4-9$. Such a curve might be sufficiently accurate for the purpose at hard. Suppose further that such a tiemperature distribution is efther not sufficiently accurate or that we can't yet tell if the estimated distribution is sufficigntly accurate. We can divide the material into two thinner slabs along the plane AA'. Because the model is more accurate for each of, the new slabs (the temperature difference across the slabs is reduced), the total temperature distribution of the two slab system is more'accurate (the lower dashed curve of figure 4-9). Considering the electric analogy (Figure $4-10$), we recognize that this subdividing technique is exactly the same as that used in making lumped parameter models of transmission lines and in. designing delay lines.

and APMROXIMATION.

$$
\text { Figure } 4-10
$$

As the material is subdivided into' thinner and thinner slabs, the accuracy increases and so does the work involved in solving the model. In the limit as the number of slabs approaches infinity, the calculated temperatures diatribution approaches the actual temperature distribution to within an infinitesimal crror ε (the fundamental ldea of integral calculus). A method of approaching a desired accuracy in the temperature distribution would be to successively double the number of slabs. When the general shape of the temperature distribution curve no longer changes signifitcantly and when the changes in temperature of the various locations of interest no longer change significantly between doublings, the required accuracy has been achieved. This is the same idea as used in determining how many terms of a mathematical series are significant.

Obviously, it will not take very many such doublings of the number of slabs until the problem becomes patnfuliy complicated to solve. We could utilize a digital computer to perform the calculation or we could utilize the idea of allowing the number of slabs to approach infinity. The application of calculus should give us the exact answer in a single equation provided that sufficient boundary conditions are known. We explore the calculus approach for two reasons.

If we know how much work will be involved in determining the exact solution, we will be able to intelligently decide where to cut off our many-slab models. Also, the technique we shall use to solve the problem exactly (separation of variables) is a general and often used technique that is worth reviewing. "The "separation of variables" technique of solving partial differential equations is also commonly used in determing the characteristics of transmission lines and waveguides, solving boundary value problems in field theory, and separating the " \ddagger dime dependent and distance dependent portions of Schroedinger's wave equation in quantum mechanics.

We begin the exact analysis by considering the electrical analogy of figure 4-8. In figure 4-11, we consider a sot han of the electrical analogy and shift our origin so that an "I" shaped section need only be considered instead of a "T" section in writing the done factions:
$\underbrace{\text { HA X }}_{\text {ELENANTCONSIDEAED }}$

Pm $C=\frac{C}{L}$ WHERE $L=$ THICKNESS OFNATERIAL
$v(x)=$ voltage at, position x
$i(x)=$ current at position x
$v(x+\Delta x)=$ voltage at position $x+\Delta x$
$j(x+\Delta x)=$ current at position $x+\Delta x$

Figure $4-11$

小. Writing Ohm's law for the elementary resistor;

$$
v(x+\Delta x)-v(x)=-r \Delta x i(x)
$$

Writing Kirchoff's current law for the node,

$$
\therefore \quad i(x+\Delta x)-i(x)=-8 \Delta x \frac{\partial v(x+\Delta x)}{\partial t}
$$

Note the use of the partial derivative $\frac{\partial v}{t}$. The partial is indicated because the voltage v is a function of distance and time, but the current into the capacitor at position $x+\Delta x$ depends only on the time rate of change of volt age at that position.

Taking the limit as Δx approaches zero (implying the number of slabs approxmating the material whose total thickness is L is approaching infinity) equations 1 and 2 become:

$$
\lim _{\Delta x \rightarrow 0}\left(\frac{v(x+\Delta x)-w(x)}{\Delta x}\right)=\frac{\partial v(x)}{\partial x}=-r i(x)
$$

and

$$
\lim _{\Delta x \rightarrow 0}\left(\frac{i(x+\Delta x)-i(x)}{\Delta x}\right)=\frac{\partial i(x)}{\partial x}=e \frac{\partial v(x)}{\partial t}
$$

Notice the $\frac{\partial v(x)}{\partial t}$ term in equation 4 results from the fact that $\frac{\partial v}{\partial t}(x+\Delta x)$ approaches $\frac{\partial v(x)}{\partial t_{r}}$ as Δx approaches zero.

Now that the quantities of interest in equations 3 and 4 are related at the position x instead of x and $x+\Delta x$, we can dispense with the parentheses denoting locations. Thus equations 3 and 4 may be rewritten:

$$
\frac{\partial v}{\partial x}=-r i
$$

and

$$
\frac{\partial i}{\partial x}=-\varepsilon \frac{\partial v}{\partial t}
$$

$$
106
$$

To solve this pair of simultaneous partial differential equations, we first eliminate one of the variables by substitution so that we have a resulting partial differential equation of variable we choose to eliminator. i and solve for v since if v is known as a function " ${ }^{\prime \prime} x$ at any instant of time, i can be found from equation 5 by a simple matter of faking derivative. To - eliminate 1 , first take the partial derivative of equation 5 with respect to x.

$$
\frac{\partial^{2} v}{\partial x^{2}}=-r \frac{\partial i}{\partial x}
$$

Equation 6 may be substituted into equation 7 , eliminating $\frac{\partial i}{\partial x}$ and yielding

$$
\begin{equation*}
\frac{\partial^{2} v}{\partial x^{2}}=r \in \frac{\partial v}{\partial t} \tag{18}
\end{equation*}
$$

We attempt to solve equation 8 by a technique known as the separation of variables. v is known to be a function of both distance x and time t. If we can somehow separate v into a time variable $g(t)$ (independent of x) and a distrance variable $f(x)$ (independent of t) we would have two "regular" differential equations (as opposed to a partial differential equation) which we know how to solve. We begin by assuming a product solution, ie., that $v(x, t)=f(x) g(t)$. In English, this statement reads, voltage which is a function of distance and time is equal to a function " f " of distance multiplied by another function "g" * of time; We begin with a product solution because of our experience in solving similar equations, in transmission lines problems. If the product solution doesn't work, we will try other mathematical operations such as $v(x, t)=f(x)+g(t)$ or ${ }^{f}(x) / g(t)$ etc. We must take several partial derivatives before we can substitute the product solution into equation 8.

$$
\begin{equation*}
v(x, t)=f(x) g(t) \tag{9}
\end{equation*}
$$

$\frac{\partial r(x, t)}{\partial t}=f(x) \frac{\partial g(t)}{\partial t}$

$$
\begin{aligned}
& \frac{\partial v(x, t)}{\partial x}=g(t) \frac{\partial f(x)}{\partial x} \\
& \frac{\partial^{2} v(x, t)}{\partial x^{2}}=g(t) \frac{\partial^{2} f(x)}{\partial x^{2}}
\end{aligned}
$$

Substituting into equation 8 ; .

$$
\left.g(t) \frac{\partial^{f} f(x)}{\partial x^{4}}\right)=\left(r \varepsilon f(x) \frac{q_{p(t)}^{q}}{q^{2}} .\right.
$$

Rearranging by algebra;

$$
\because \frac{1}{f(x)} \frac{\partial^{2} f(x)}{\partial x^{2}}=r e \frac{1}{g(t)} \frac{2 a(t)}{\partial t}
$$

In equation 10, the variables have been separated, that is, the left side of the equation is a function only of x, and the right side of the equation is a function only of t. ' In equation 9, a change in x results \ln a change in $f(x)$. It does not change $g(t)$ because $f(x)$ and $g(t)$ are assumed independent. In equation 10 , the only way that a change in x and $f(x)$ would not change $g(t)$ would be if each side of the equation were equal to a constant, K^{2}. Rewriting equation 10 :

$$
\frac{f}{f(x)} \frac{\partial^{2} f(x)}{\partial x^{2}}=K^{2}=r \in \frac{1}{g(t)} \frac{\partial g(t)}{\partial t},
$$

(1)

$$
\frac{1}{f(x)} \frac{d^{2} f(x)}{d x^{2}}=k^{2},
$$

and

$$
r \in \frac{1}{g(t)} \frac{d a(t)}{d t}=K^{2}
$$

In oquations 11 and 12 , since the variables have separated resulting in two equations containing one variable each; we may use the total derivative symbols. $\frac{d}{d t}$ and $\frac{d}{d x}$ instead of the partial derivative symbols $\frac{\partial}{\partial t}$ and" $\frac{\partial}{\partial x}$.

Equations 11 and 12 may now be solved with the aid of a reference on diffferential equations (ref 3). K^{2} must be a real number since $\frac{1}{f(x)}$, and $\frac{\partial^{2} f(x)}{\partial x^{2}}$ are real. numbers in a real, physical situation. Solving equation '12:

$$
\begin{aligned}
& \frac{d}{d \epsilon}-\frac{k^{2}}{r \cdot \varepsilon} g=0 \\
& g(t)=A e^{\left(K^{2} / r \varepsilon\right) t}
\end{aligned}
$$

The constant K^{2} must be negative or zero. If K^{2} Were positive, g would approach infinity as time increased, thus V would also approach infinity as t increased. This is physically ridiculous, therefore;

$$
\mathrm{K}^{2} \leq 0
$$

We now proceed to solve equation 11 , knowing that $k^{2} \leq 0$.

$$
\frac{d^{2} f}{d x^{2}}-k^{2} f=0
$$

If. $K^{2} \quad 0$, the \ddot{x} solution is

$$
\therefore f=a x+b
$$

where a and brain constants to be determined by the initial, final, or boundary conditions of the problem

If $K^{2}<0$ (K purely imaginary), the solution is

$$
f(x)-a \sin |K| x+b \cos |K| x
$$

where again a and b are constants to be determined by initial, final, or boundary conditions of the problem. It is now also obvious why K^{2} was chosen as the constant.in equation's ll. and 12 instead of K. The value of K^{2} must also be determined from boundary conditions and will in general be found to have many values. The temperature distribution according to equation 15 in a real problem may be expressable as a sum of sine and cosine waveforms (a Fourier series) giving an infinite number of $|K| s$ and $K^{2} s$. "Each K^{2} will give another" solution to $v^{\prime}(x, t)=f(x) \dot{8}(t)=$ equation 13 multiplied by equation 14 or 1.5 , and all such solutions are valid. Because we have a linear system (a resistor-capacitor net,work that doesn't contain nonlinear "devices like diodes or SCR), the principle of' superposition is valid, and the total solution may be composed by summing all possible individual solutions. Expressed mathematically,

'lis procedure is 11 lustrated in the following example. The basic derivation we have completed is valid for all one dimensional, homogeneous material, heat flow problems. The form of the solution would be different in a ayclindrical. or spherical geometry, but the method would remain the same.

Example

We wish to find the temperature distribution as a function of time in a bar of homogeneous material. Originally the bar is at 25° ? as is the large heat sink at the right end of the bar.

At time $\mathrm{l}=0$, the large thermal reservoir (a large block of copper for example) is brought in contact with the left and of the bar. 'the temperature of the reservoir and heat-sink do not change significantly with time, If no significant amount of heat is lost from the bar due to radiation or convection (in a real problem, we would have to estimate these quantities), the heat M. 1 is one dimensional from the reservoir to the heat-sink and our previous analysis can be used.

Stating the initial, final, and boundary conditions:
initially, $\mathrm{T}=25^{\circ} \mathrm{C}$ throughout the bar; finally, in steady state the temperature is linearly distributed -.
over the length of the bar as shown in figure 4-13.

This distribution follows as a direct result of the steady -
stat heat flow equation in figure 4-1.

$$
\begin{aligned}
& H=-k A \frac{d I}{d x} \quad H=\text { coins, steady } \\
& \therefore d T=-\frac{H}{k,} d x \quad \Rightarrow T=-\frac{H}{k A} x+B \\
& \text { AT } x=0, T=100^{\circ} \\
& \text { AT } x=L, T=25^{\circ} \\
& \therefore 25=-\frac{H}{K A} L+100^{\circ} \\
& \therefore \frac{H}{K A}=\frac{75}{L} . \\
& \text { Next we form the products } f(x) g(t) \\
& v(x, t)=\left(a_{0} x+b_{0}\right) A_{0} e^{0} \\
& +\sum_{k^{2}<0}^{2} A_{k^{2}}\left(a_{k^{2}} \sin |k| x+b_{k^{2}} \cos |k| x\right) e^{k x_{k} t}
\end{aligned}
$$

For the final steady state, the sum terms disappear because the $\left.e^{2} / r a\right) t$ terms approach zero (remember K^{2} is negative) as t approaches infinity. We can now determine the constants of the first term $\left(K^{2}=0\right)$ of the series using the final conditions.

$$
\begin{aligned}
T(x, \infty) & =C_{0} x+d_{0} \quad\left(A_{0} a_{0}=c_{0}, A_{0} b_{0}=d_{0}\right) \\
& =-\frac{75}{L} x+100
\end{aligned}
$$

Initially, $\mathrm{I}\left(\mathrm{x}, \mathrm{t}\right.$) was equal to $25^{\circ} \mathrm{C}$ throughout the bar. Therefore $25=-\frac{25}{2} x+100+\sum_{k^{2}<0}^{2} A_{k}\left(a_{k} \sin |k| x+b_{k^{2}} \cos 1 k \mid x\right) e^{0}$
or, lumping A times $a{ }_{2}$ and A, times b together, at $t: 0$

$$
\frac{75}{2} x-75=\sum_{k^{2}<0}^{k^{2}}\left(c_{k} \sin / k / x+\operatorname{s}_{k^{2}} \cos / k / x\right)
$$

We use the standard technique of defining a temperature cyclic in x and which uses the left side of the above equation as part *of the cycle. Then the right side of the equation becomes a Fourler series. The answer will be valid only over that partion of the cycle that the left side of the equation defines the temperature.

Figure $4^{*}-14$

* Note that $|K|=0$ has already been used. Therefore the waveform we choose $t \phi$ define a cycle ($L<x<4 \mathrm{I}$) must have a zero average valus so that no dc level will appear in the Fourier series. The waveform chosen has a symmetry such that no sine terms appear in its fourier series. Also, we can now determine the possibie values of K^{2}.

When $x=4 t$, the first cosine argument is 2π.

$$
K=\frac{2 \pi}{4 L}=\frac{\pi}{2 L} \text { for the first term }
$$

and

$$
K^{2}=\frac{\pi^{2}}{4 L^{2}}
$$

$$
1 \% 2
$$

For the second term of the series
$|K|=$ twice as much as the first term $=\pi / L$

$$
K^{2}=\frac{\pi^{2}}{L^{2}}
$$

The fourier series for the waveform shown in figure $f^{\prime}-15$ is

Figure $4-15$

Translating this solution into terms of our problem gives

I he values of K^{2-} are:

$$
\begin{gathered}
\mid K / \\
\frac{\pi}{2 L} \\
\frac{5 \pi}{2 L} \\
\frac{5 \pi}{2 L}
\end{gathered}
$$

We have yet to determine the thermal equivalents of re.

$$
\begin{aligned}
\theta & =\frac{C \text { exec. }}{\mathrm{L}} \text { is analogous to } \frac{C \text { therm }}{\mathrm{L}} \\
\mathrm{re}_{\mathrm{E}} & =\theta \mathrm{C} / \mathrm{L}^{2}
\end{aligned}
$$

Substituting into the full expression for $T(x, t)=$

$$
\begin{aligned}
& T(x, t)=-\frac{75}{2} x+100
\end{aligned}
$$

$$
\begin{aligned}
& +\frac{1}{25}\left(\cos \frac{\xi \pi x}{2 L} x\right) e^{-25 \frac{25}{2} t}+\frac{1}{49}\left(\cos \frac{\pi \pi x}{2 L}\right) e^{-\frac{45}{75}{ }^{2} t}+\cdots 7 \text {; }
\end{aligned}
$$

Figure 4-16 shows the temperature distribution in the bar at

It must be remembered that the solution of the previous example is only "exact" in the sense that its accuracy is limited only by the accuracy of the model (one directional heat flow, no radiation or convection, perfect heat source and sink), provided a sufficient number of terms of the solution are considered. The method of analysis chosen should also depend upon whether or not the more laborious model will in fact give more accurate answers.

It is useful to devise another madel of the thermal system that is valid only for a particular power dissi uated versus time curve. Such a model has the advantage of extreme simplicity. For example, an SCR may be used as a "static switch" in which a current is turned on for a short period of time. Assume the current waveform and the power dissipated in the SCR are as shown in figure $i f-17 a$ and b. The $S C R$ junction temperature is given as a function of time in figure $4-17 \mathrm{c}$.. The transient thermal impedance " θ_{c} " is commonly detined as the ratio of the maximum temperature rise to the power dissipated or

The transient thermal impedance defined in this way changes as a minction of the time " τ " the power pulse is applied." If τ is very short, ${ }^{4}{ }_{c}$ is small. As τ becomes long, θ_{c} approaches the steady-state thermal resistance. Figure $4-18$ shows a typical plot of θ_{c} vs r for a square pulse of power dissipated in an SCR. Because we still have a linear system, the change in temperature is proportional to the amplitude of the power applied in the same time interval so that to a first approximation θ is not dependent upon P.

Summary
In this chapter, we have reviewed two basic thermal properties of materials, namaly, thermal conductivity and heat capacity. Thermal resistance was introduced as a convenience in solving heat flow problems related to SCR heat sinking. In addition, on the basis of empirical evidence, it was found that heat sinks which cool by processes of convection and radiation could also be said to have a thermal resistance.

Thermal capacitance became a useful concept in the consideration of transient temperature distributions in thermal conduction problems. A material conducting heat was modeled by superimposing the models for steady-state heat. conductivity and thermal capacitance (called a "lumped parameter model"
because it was composed of blocks of "ideal." materials). It was then argucd that the accuracy of the transient model increased as the thickness of the material being modeled decreased. Accordingly, thick materials were subdivided into larger numbers of thin slabs. The electrical analogy (developed alongside as an aid to gaining insight into the thermal behavior of materials) to the thermal model suggested a standard mathematical approach in which the thickness of each slab could be made to approach zero and an exact transient solution to transient heat conduction problems could be found. An example one dimension heat flow by conduction problem was presentred to indicate the amount of effort involved in calculating an "exact" solution. It was intimated that in a three dimensional heat flow problem, the difficulties and effort involved would drastically increase. This required effort gave rise to the notion of transient thermal impedance, a simple empirical relabion belween power dissipated in the device and temperature rise for a specific dissipation waveform.
'Ihis chapter has introduced two more kinds of modeling. Modeling by analogy, as exemplified by the electrical analogues of the thermal properties, and superposition of models of different linear phenomena, as exemplified by the development of the lumped parameter model of transient hoat fluw. It must be remembered that superposition is only valid in linear systems (in which output is proportional to input).

1. Iwo blocks of aluminum, A and B, are thermally insulated from their surroundings and each other. Block A welghs. 5 times as much as block B. Block A is at a temperature of $100^{\circ} \mathrm{C}$ while block B is at a temperature of $20^{\circ} \mathrm{C}$. If the two blocks are brought together (touch) while they are atill. insulated from their surroundings, what wlll be the steady-state temperature of block A ?
2. Two electrical leads (\#14 copper wire) extend into a vacuum Dewar (thermos bottle) as shown in the figure below. The upper ends of the copper wires are at room temperature. The lower ends of the wire are in liquid nitrogen. How much liquid nitrogen (in liters of liquid N_{2}) evaporates per minute due to the presence of the wires?

WIAES 30 CM LONO

Problem 1

In the design of electronic instrumentation for use in the deep ocean, it is lrequently necessary to protect the electronics from the high pressures occurring in the ocean depths (5,000-15,000 psi). One exceptionally strong instrument package for these purposes is a hollow glass sphere. The sphere is composed of two hollow hemispheres. The high pressures force the two hemi-- spheres together, slightly deforming the glass into a perfect seal:

glass thickness $=\frac{1}{2}$ inch sphere diumeter foutside measurement $)=12$ inches

If the electronics package inside the sphere dissipates 100 watts, and the outer surface of the sphere is at the ambient temperature of the deep. ocean $\left(0^{\circ} \mathrm{C}\right)$ what is the temperature at the inside surface of the sphere? Assume the hat flow is uniform over the surface of the sphere. What is the maximum thermal gradient (in ${ }^{\circ} \mathrm{C} / \mathrm{cm}$) in the glass?

If the thermal gradient in the glass becomes tioo large, the thermal stresses caused by the thermal gradient will cause the glass to crack. 'Of course, the . glass can sustain much larger themal gradients when it is under pressure,' but there still is likely to, be some maximum allowable value. Recall that in transient effects, ${ }^{\prime}$ very large the gradients can exist before steady state is established. If the electronics inside the glass sphere is brought up to power slowly, the transient thermal gradients can be minimized. How slowly should the electronics in the sphere be brought up to full power so as not to put undue thermal. stress on the glass sphere? (Please answer in terms of seconds). Explain your reasoning! "a

Thermal conductivity of glass $=0.002$ calories $\%$ sec through a plate 1 cm thick of area $1 \mathrm{~cm}^{2}$ with a temperature difference of 1°, - across the plate :

Specific heat of glass $=0.117$ calories/gram
Density of glass $=4.0 \mathrm{grams} / \mathrm{cm}^{3} .(r f$. Handbook of (hem. \&.Phys.).

```
Problem"?
```

A power transistor (a heat source) is located at the center of an aluminum disk. The outer edge of the disk, is in intimate contact with a salt-water cooled surface such that temperature measurements at the edge of the disk show a constant temperature of $0^{\circ} \mathrm{C}$ (within experimental accuracy of $\pm 1 / 2^{\circ} \mathrm{C}$) for the thermal power range under consideration. The transistor is mounted tightly on the gluminum disk and has an "effective" diameter of 2 cm . That is, the plate
"can be said" to have a uniform temperature in a 2 cm circle directly under the transistor.

As a first try at analyzing the thermal properties of this system, we shall represent the thermal characteristics of the disk by our familiar resistorcapacitor analog.

Knowing that:
thermal conductivity of aluminum

$$
\therefore 0.50 \frac{\mathrm{cal}}{\mathrm{sec}} \text { through a plate } 1 \mathrm{~cm} \text { thick with areas } 1 \mathrm{sq} . \mathrm{cm} \text { for a }
$$ temperature difference of, $1^{\circ}{ }_{C}{ }^{\circ}$

specific heat of aluminum

$$
=0.2185 \mathrm{cal} / \mathrm{gram}^{\circ} \mathrm{C}
$$

density of. aluminum $=2.7^{4}$ grams $/ \mathrm{ca}$
and theist 1 cal $=4.186$ joules

1) Calculate the appropriate values of R and C for sur analog h
2) Calculate a new R and C if the thickness of the disk is only 0.50 cm .
3) Assuming a junction-tomcase thermal impedance for the transistor of $1 \mathrm{C} /$ walt and a case to diak impedance of $0.4^{\circ} \mathrm{C} /$ watt, find the steady-stato bemperature of the junction if the transistor dissipates 20 woth.
4) Find the temperature distribution in the disk to within $t 1 / 2^{\circ} \mathrm{C} 1$ second. after the transistor is "turned'on.". .

laboratory Problem 1

We have a number, (about, a dozen) of $35 \mathrm{amp}, 500$ volt $\mathrm{SCR}^{\prime} \mathrm{s}$ mounted on heatsinks for student use in the laboratory. Several of these sch's have failed recently for unknown reasons. A cursory inspection of the $\operatorname{SCR}^{\prime} 3$ shows that they are not mountied on their heat-sinks in accordance with the manufacturer's specifications. We must decide-whether remounting the SCR's is worth our trouble. Determine the maximum gotings of the $S C R$ as presently attached to its heat-sink. Please do not destroy any more SCRs.

Laboratory Problem 2

A 35 amp, 500 volt $S C R$ is to be used in a'single pulse generating circuit is shown in the following figure. In order that we can relate the maximum current I to the firing angle, debermine the transient thermal impedance of the SCR-heat-sink system for $0^{\circ}<\alpha<90^{\circ}$.

1) Robért Murray, Jr, EA., 日ilicon "Controlled Rectifier Deaigners' Handbeor, Westinghouse klectric Corp., Youngwood, Pa., lo63.

This reference gives a brief revtiew of the thermal properties materials and "cooling power , curves" for typical heat-sinks for both natural and" forcod air convection. Ihermal impedance data for stut-mounted rectifiers :are also presented.
:) F. W. Gutzwilher, Ed., SCR Manual, 4th Ed., General Electric Corp., Syracuse, N.Y., 1967:

This reference lists, methods of mounting $S^{\prime} C R^{\prime} s$ other than stud mounting, and sontains a, brief sefction on heat-sink. fin design.
3) Dwight, Herbert Bristol, Taples of Integrals and other Mathematical Data, 3rd Edi, Macmi blan'Co.,'New York, 1957.

This reference is one of many excellent tables of integralis and solutions tio differential equations.

The following articles are available from the Wakefield Engineering Inc. C Company, Wakefiled, Massachusetts in addition to the referenced journals.
4) Wayne Goldman, "An Introduction to the Art of Heat sinking", Flectironic Packaging and Production, July, 1966.
5)" Wayne Goldman, "9 Ways to Tmprove Heat Sink' Performance", Electronic Products, Ocb., 1966.
6). Wayne Goldman, "Torque and Thermal Resistance", Electronics, Sept. 7, 1964.

Chàpter 5; A Free-wheoling Diode DC Moton Drive

Introduction

In this chapter, we consider a simple but afficient motor controller: The methods used in detertrining the steady-state behavior of the circuit are the same as used in chapter 3, but the analygis is alightly more complicated by the motor and mechanical load properties. : The calculation of a "tum.on" or speed-change transient is considered for the gése of a non-linear load, characteristic.' The non-linear system equations are solved by an iteration technique, and the model of "quasi-steady-state" in which some system quantities can be assumed to be in steady-state while other quantities are oonsidered as undergoing a transient is introdućed.

Frge wheeling Diode Circuit
The circuit under consideration is shown in figure 5-1. This cirquit is frequently referred to as a "chopper circuit" because the action of the SCRs is to "chop" the airect voltage into a series of voltage pulses.

Figure 5-1

That portion of the circuit enclosed in dashed lines can be recognized as the curn-off circuit for SCR_{1}. The basic idea of the circuit is that SCR_{1} acts as a aimple switch. If the switch is closed for a long time, the motor will reach the maximum steady-state speed determined by the battery voltage, the motor characteristics and the mechanical load characteristics. If the switch remains open, the motor doesn't turn the propeller. If the switch is alternately open and closed in a.cyclic manner, the motor will run at some speed in between zioro and maximum.

The circult is basically an efficient circuit since except for winding resistance and the forward conducting characteristics of the gCR and dode, there are no dissipative elements in the circuit. The inductance L_{a} (including the armature inductance of the motor) maintains the armature current through diode D when $S^{C C R} 1$ is not conducting. Thus the motor torque (proportional to the armature current) is smooth in tíme rather than pulsating, a very desirable. : leature. This circuit is most often used with sories wound motor rather than a shunt wound motor. In such a case, L_{Q}, the series field inductance is sufficiently large that an additional external inductor is not usually necessary. However, the shunt motor is slightly easier to analyze in the circuit, and so the series motor problem is left as a home problem at the end of the chapter. Modeling the Circuit \#1 - Steady-state

The $\$^{*} \mathrm{CR}_{1}$ and its turn-off circuit is modeled as a simple switch as shown in figures 5-2. In actual problems it may be necessary to consider whether or not the capacitor delivers significant energy to the motor during the dis charge part of its cycle, however, this additional consideration adds difficulty without being particularly instructive. Therefore, for the sake of brevity (the calculation is not all that hard) we shall assume the turnoff circuit has no significant effect on the operation of the circuit ather than to turn-off

Likewife, we neglect the forward conducting voltage drops acrosis the SCR and diode in all the models of this problem, and we assume no reverse or blocking leakage current,

Figure $5-2$

As a first try at analyzing the circuit, we make same assumptions known to be incorrect, but helpful. Assume L_{a} is so large that, I_{b} can be considered constant and assume the inductor winding resistance and the motor armature resistance are negligibly small. These assumptions will be relaxed in succeeding model.s. Also, if the switch is opened and closed frequently enough, the inertia of the motor rotor and propeller will tend to keep ω, the angular frequency of the shaft rotation, constant. The motor armature voltage " E_{a} ", which is equal to the terminal voltage $v_{\dot{a}}$ if the bush drop and armature winding resistance are negligible, is proportional to the field flux multiplied by the angular frequency of rotation, i.e.

$$
\begin{equation*}
\mathrm{V}_{\mathbf{a}}=\mathrm{k} \phi \omega \tag{1}
\end{equation*}
$$

where $k=$ constant of proportionality. "Assume
that the flux for the shunt machine is constant, thus neglecting arm: re 'reaction and assuming a constant field current. We also know the armature current is proportional to the motor torque multiplied by the flux.

$$
\begin{equation*}
\Gamma=k^{\prime} \phi I_{a} \tag{2}
\end{equation*}
$$

where, $\mathrm{T}=\mathrm{motior}_{85}$ torque.

Note that k^{\prime} is notronecessarily oqual to k because in linearizing the nonlinear motior characteristics, neglecting losses, and peglecting armature reaction (calling ψ constant), we have neglected motor characteristics that are not yogligible. Accordingly, k and k ' are determined by a "pest fit" approximation to empirical motor data. Usually, k and k differ by only a.few percent for common motors exceeding a few horsepower.

The motor load is indicated anfopropelier. To a first approximation, we then expect the torque requiredtatative the propeller to be prdportiont to the square of the angular velocitus' $\tilde{\omega}^{\prime \prime}$, that is,

$$
\begin{align*}
& T=a^{2} \tag{3}\\
& \text { where } a=\text { proportionality constant. }
\end{align*}
$$

If the motor is properly "matched" to the propeller using a mechanical matching device (gearbox), the motor will deliver its rated torque at the rated motor speed so that

$$
\alpha=\frac{{ }^{\mathrm{T}} \text { rated }}{\omega^{2}}
$$

Digression-Common Motor Loads

The steady-state torque-speed characteristics of many common

 motor loads are easily derivable from the elementary principles of mechanics. Provided the losses of the load are negligible, it is usually possible to ${ }^{l}$ avoid an analysis of the load mechantsm in detail and consider only the baisic intent of the load device. such estimates are more valid for large power capability systems (above 15 hp.) than * for low power capability systems (fractional horsepower systems), bectuse at low power levels, iris usually not practical to spend the
extra effort and money required to manufacture a "to w-loge" device. A cries of olpmentary examples of torque-speed characteristic, ". estimating follows:
The elevator

$d \theta=$ ANGLE SMART mprare: m LIFTING ELEVATOR AMOUNTVIE

Power "P" = rate of doing work
The elementary work done in rating the elevator $=$ work delivered by motor. $F d x=T d \dot{\theta}$

$$
P=F \frac{d x}{d t}=F v=T \frac{d \theta}{d t}=T \omega
$$

 ratio and drive winch size.

MOTOR PRODUCING TORQUE "T"

$T=F\left(\frac{\mathrm{~V}}{\omega}\right)^{-1}$ constant depending on the gear
The shunt-excited disfenerator

$$
T=\frac{k^{\prime} k \phi^{2}}{R}
$$

$$
\omega
$$

$$
T \doteq \alpha \omega \text {, a linear relation }
$$

$$
\frac{>}{i}
$$

The propeller or fan

Abstract

Consider a control volume of fluid having a negligible velocity when entering the propeller and having a high velocity " v " when exiting the propeller.

Change in kinetic energy " $\Delta \mathrm{KE} \mathrm{E}^{\prime \prime}$ of control volume $=\frac{1}{2} \mathrm{mv}^{2}$
v^{2} is proportional to ω^{2}
$\therefore \mathrm{AKE}=\mathrm{C}_{\omega}{ }^{2}$
The power "P" delivered by the propeller is the rate of change of energy with time
$P=\frac{\Delta K E}{\Delta t}$ where Δt is the time required to change the energy of the control volume.
Δt is inversely proportional to ω since more control volumes per unit time pass through the fan as ω is increased.

Thus $P=\frac{C \omega^{2}}{C^{1} / \omega}=\alpha \omega^{3}$.
Since $P=T \omega=\alpha \omega^{3}$,
$T=\omega^{2}$, a quadratic relation.

We make our first try at finding the steady-state speed, curfent, and voltage using the same "averaging over the cycle" technique used in the inverter circuits, thereby eliminating the inductor in our equations,

$$
\begin{gather*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} v_{D} d \theta=\frac{1}{2 \pi} \int_{L}^{2 \pi}+v_{a}^{2} V_{L} d^{0}+\frac{1}{2 \pi} \int_{0}^{2 \pi} v_{a} d^{\theta} \tag{4}
\end{gather*}
$$

Since v_{a} i proportional to speed (equation l), and we have assumed a constant, speed; v_{a} is constant.

Therefore,

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} v_{a} d \theta=v_{A}
$$

The v_{D} term is only slightly more difficult to evaluate.' Refering back to figure 5-2: when the switch is closed, $v_{D}=F_{b}$; when the switch is open, I_{a} flows through the diode which must be conducting and $v_{D}=0$. Define $\theta_{\text {on }}$ (figure 5-3) as the interval the switch is closed, $\theta_{\text {off }}$ as the interval. the switch is open, and $\dot{g}=\frac{\theta_{0 n}}{\theta_{\mathrm{f}}+\theta_{\text {on }}}$ as the fraction of the time the switch. is closed.

It is clear from figure 5-3 that

$$
\begin{aligned}
\frac{1}{2} \int_{0}^{2 \pi} v_{D} d \theta & =\frac{1}{2} \int_{0}^{\theta_{1}} E_{b} d \theta+\frac{1}{2 \pi} \int_{\theta_{1}}^{2 \pi} O d \theta \\
& =\frac{1}{2 \pi} E_{b} \theta_{0}
\end{aligned}
$$

Since

$$
\begin{aligned}
& \theta_{o n}+\theta_{o f f}=2 \pi \\
& \frac{1}{2 \pi} \int_{0}^{2 \pi} v_{D} d \theta=\frac{1}{\theta_{0 n}+\Theta_{o f f}} E_{b} \theta_{o n}=g E_{b}
\end{aligned}
$$

substituting into equation 5 yields

$$
\begin{equation*}
g E_{b}=v_{a} \tag{6}
\end{equation*}
$$

Knowing the armature voltage v_{a}, we find the speed using equation 1 .

$$
\begin{equation*}
\omega=\frac{2 \sqrt{k}}{k \phi}=\frac{q E_{h}}{k \phi} \tag{7}
\end{equation*}
$$

Knowing w allows us to determine the value of r_{a} using the motor torque equation (equation 2) and the load characteristic (equation 3).

$$
T=k^{\prime} \phi I_{a}=\alpha \omega_{i}^{2}
$$

$$
\begin{equation*}
I_{a}=\frac{\alpha \beta^{2}}{k^{\prime}} \quad \text { OR } \quad I_{a}=\frac{\alpha \sigma^{2} E i^{2}}{K^{\prime} K^{2} \phi^{3}} \tag{8}
\end{equation*}
$$

Modeling the Circuit \#2 - Steady-state
As the first "refinement" of the calculation we choose to include the effects of the winding resistance of the inductor and the motor armature. resistance. The motor brush voltage drop and the SCR and diode forward voltage drops could also be included at this paint. We redraw the circuit model as shown in figure 5 - 4. Note that the motor armature resistance has been included with the winding resistance in one lumped "R" just as the armature inductance was included in "L".

Figure 5-4
We retain the assumptions of constant current I_{a} and constant speed ω. We could rewrite Kirchoff's voltage law around the diode-inductor-resistormotor loop and average as before, arriving at new (and slightly more complicated) general expressions for v_{a}, I_{a} and u If we were interested in v_{a}, w, and I_{a} for only a few specific values of g, another approach would be well worth considering.

We have already calculated a first approximation of v_{a}, ω, and ${ }_{a}$ using model \#l.: We could make a next approximation by using T_{a} as previously calculated to determine the $I_{a} R$ voltage drop (a constant because I_{a} is constant). Subtracting this drop from the average value of v_{d} yields a new value of v_{a}.

$$
\begin{equation*}
\frac{1}{2 \pi} \int_{0}^{2 \pi} v_{D} d \theta-I_{a} R=g E_{b}-I_{a} R=v_{a 1} \tag{0}
\end{equation*}
$$

The new value of " \dot{a} (now noted as $v_{a l}$) can be used to determinfle a new, ω_{y} and then a new ${ }^{\text {a } 1 \text { : These in turn can be used again to recalculate, again new }}$ values of v_{a}, ω, and I_{q}. When the variables no longer change significantly, the answer has been found. Such calculations are frequently performed in a tabular manner for convenience:

This method of calculation is called an "iterated" calculation and is a fretquently used method in digital computer calculations. However, in many pactical problems, sufficient accuracy may be attained after only one or two iterations; and if only a few values are required, the iterated calculation may be a significant "short cut" even for hand calculations compared to spiving the more complicated problem in general terms.

Modeling the circuit \#3 - steady -state

As the next refinement we shall let I_{a} vary within the cycle provided I_{a} does not go to zero (although it may approach zero arbitrarily closely). In this way we avoid having to break the time interval into more than two "pieces", corresponding to the switch open and closed. We retain the assumption of constand speed (que to the "large" inertia of the motor-propeller system). We first question the validity of our previous analysis.

Returning to the circuit models 1 and 2, since speed is constant, the determination of v_{a} (table) has the same validity. Since speed is proportional to v_{a} (equation 1), the determination of ω is also still yalid (equation 7). Hover, the torque relations (equations 2 and 3) are only valid if inertia is ignored, and we have postulated that ω is constant only because of inertia, I_{a} varying. We must reexamine the torque relations.

Define $J=$ moment of inertia of the armature, gearbox (if any), and propeller. Lumping the moment of inertia of the armature in with the proweller allows us to define a motor torque T as applied to the armature by the electromagnetic field interactions in the motor. Thus the torque rear trons become (refer to figure $5-5$).

$$
T^{\prime}=k^{\prime} \phi r_{a}^{0} \quad \text { as before }
$$

and

$$
\begin{equation*}
\mathrm{T}=\mathrm{J} \cdot \frac{\mathrm{~d} \omega}{\mathrm{dt}}+\alpha \omega^{2} \tag{9}
\end{equation*}
$$

We gan eliminate the torque 1 from the equations yiolding,

$$
k^{\prime} \dot{\psi} I_{a}=J \frac{d \omega}{d t}+\alpha \omega^{2}
$$

Note that if we average over arcycle, the $J \frac{d \omega}{d t}$ term must disappear, since averaging over ar cycle.

$$
\frac{1}{7} \int_{0}^{\gamma} \sqrt{d \omega} d t=\frac{1}{\sigma^{2}} J \int_{\omega_{0}}^{\omega_{0}} d \omega=\frac{1}{\gamma} J\left(\omega_{\nu}-\omega_{0}\right)
$$

and $\omega_{\tau}{ }^{-}$must be equal to zero in a steady -state cyclic. process.
Therefore,

$$
\frac{1}{J^{2}} \int_{0}^{\gamma} k^{\prime} \phi I a d t=\frac{1}{\gamma} \int_{0}^{\Gamma} \frac{d \omega}{d t} d t+\frac{1}{\gamma} \int_{0}^{x} \dot{\alpha} \omega^{2} d t
$$

i

$$
k^{\prime} \phi I_{a \text { avg }}=\alpha \omega^{2}
$$

s

$$
\begin{equation*}
I_{a \text { avg }}=\frac{\alpha \omega^{2}}{k^{\prime} \phi} \tag{LO}
\end{equation*}
$$

which is very similar to equation 8.

Digression

- Note that we could not nave argued that $J \frac{d \omega}{d t}$ is negligible because ω is constant. ω is constant because J is so large, there-. fore $J \frac{d \omega}{d t}$ may be signt ficant despite $\frac{d \omega}{d t}$ being "small". Also, if $J \frac{d \omega}{d t}$ weres negigible, T_{a} would be constant which contradicts the assumption : of I_{a} varying. Since we are using this argument to determine I_{a}, assumf ing $\cdot \mathrm{d} \frac{\mathrm{d} \omega}{\mathrm{dt}}$ negligible would'be a contradictory and therefore invalid assumption.

We heve shown that model. \#l retains its validity if the average "pitue of armature rent $I_{\text {a ang }}$ is substituted for the previously constant value of 'a. Furthermore, since

$$
\frac{1}{\tau} \int_{0}^{\tau} v_{l P} d t=R \frac{1}{\tau} \int_{0}^{\tau} I_{a} \cdot d t
$$

arguments prodel \#2 are also valid. Thus we begin model \#3 knowing

$$
v_{a} \text {, } \omega^{\prime \prime} \text {, and } I_{q} \text { avg' }
$$

We must yot find the instantaneous values of ${ }^{\prime}$.
Writing Kircholf"s vollage low around the diode-inductor-resistor-motor loop of figure $5-4$ yields

$$
\begin{equation*}
v_{D}=I \cdot \frac{d I_{Q}}{d t}+\dot{R} I_{a}+v_{Q_{0}} . \tag{1.1}
\end{equation*}
$$

Pquation il is really two equations:
suitch open, $v_{D}=0$

$$
L \frac{d T_{a}}{d t}+R I_{a}+v_{a}=0
$$

$$
\text { where } v_{a} \text { is known from model \#2, }
$$

and

$$
194
$$

$$
\begin{equation*}
L \frac{d I_{a}}{d t}+R I_{a} \cdot\left(E_{b}-v_{a}\right)=0 \tag{13}
\end{equation*}
$$

where F_{b} will be larger than v_{a}, still known from model \#n.
We still also have
I_{a} avg number known from model. He for the chosen value of g

We must find a way to "solve" equations 12 and 13 . As we aril see, equation 14 will provide a numerical check of the solution of I_{a}.
The solution of equation 12 is

$$
\begin{aligned}
& \text { action } 12 \text { is } \\
& I_{a}=\frac{v^{2}}{R}+C e^{-\frac{R}{L} t} .
\end{aligned}
$$

where C is a^{\prime} constant yet to be determined.
The solution of equation 1.3 is

$$
\begin{aligned}
& \text { ation } 13 \mathrm{is} \\
& T_{\mathrm{a}}=\frac{-\left(\mathrm{E}_{\mathrm{b}}-\mathrm{V}_{\mathbf{a}}\right)}{\mathrm{R}}+\mathrm{C}^{\prime} e^{-\frac{R}{\mathrm{~L}}} \mathrm{t}
\end{aligned}
$$

where ' ${ }^{\prime}$ ' is another constant yet to be determined.
Changing the variable t into θ (refer to figure 5-3) knowing that $\frac{\theta}{2 \pi}=\frac{t}{\tau}$ where $\tau=$ time the switch is open plus the time the, switch is closed, we have:
switch open, $\theta_{1}<\theta<2 \pi$

$$
\begin{equation*}
i_{a}=\frac{x_{a}}{R}+C e^{-\frac{x^{2}}{2} \theta} \tag{15}
\end{equation*}
$$

and
switch closed, $0<\vec{\theta}^{\circ}<\theta_{1}$

$$
\begin{equation*}
I_{a}=-\frac{\left(E_{n}-\psi_{m}\right)}{R}+c^{\prime} e^{-\frac{\gamma}{2} R \theta} \tag{1.6}
\end{equation*}
$$

The inductor prevents l_{a} from changing instantaneously, therefore 1_{a} is a_{a}. continuous function of time. At θ_{1}, when the switch opens we must have •

$$
I_{a}(\text { equation } 15)=I_{a}\left(\text { equation 16) at } 0_{1}\right.
$$

Also, because we are in the steady-state of a cyclic process,

$$
I_{a}(\dot{\theta})=I_{a}(\theta+2 \pi)
$$

OI.

$$
\begin{equation*}
I_{a}(\theta=0, \operatorname{cqn} .16)=I_{a}\left(\theta=2 \pi \pi_{i} \operatorname{cqn} 15\right) \tag{18}
\end{equation*}
$$

Solving these equations, we first substitute equations 1.5 and 16 . into equation I.7.

$$
\frac{v_{2}}{R}+C e^{-\frac{\gamma}{2+} \frac{B}{L} \theta_{1}}=-\frac{\left(E_{b}-v_{a}\right)}{R}+\dot{C}^{\prime} e^{-\frac{\gamma}{2 \pi} \frac{R}{L} \theta_{1}}
$$

or, rearranging the teams by algebra,

$$
E_{1} e^{+\frac{x}{2} R_{1}=C^{\prime}-C . . . C}
$$

Next we substitute equations 15 and 16 into equation 18 .

$$
-\frac{\left(E_{b}-v_{a}\right)}{R}+C^{\prime}=\frac{v_{a}}{R}+c e^{-\nu R / L}, \cdots
$$

or, rearranging the terms,

$$
\frac{E_{b}}{R}=c^{\prime}-{ }^{*} c e^{-\frac{r_{R} R}{L}}
$$

Equations 19 and 20 cain be solved for C and C^{\prime} yielding

$$
\begin{equation*}
C=-\frac{E_{h}}{R} \frac{\left(e^{\frac{x}{2} \hat{L}^{\theta} \theta_{1}}-1\right)}{\left(1-e^{-y R / L}\right)} \tag{21}
\end{equation*}
$$

and

- The values of \because and $"$ may be substituted bark into equations 15 and 16 . We have found I_{a} as a function ot time. For a given time duration of a cycle t and a value or, the conduction angle $\theta_{\text {on }}=\theta_{1}$, we could plot l_{a} as a function of θ as in figure' ' - 6. 'the average value of I_{a} as calculated by averaging I_{a} from equations 15 and 16 should be compared with the average value of 1 a (equation 1.4) or determined from model. \#2, checking the calculation.

Figure $5-6$

Modeling the circuit \#\# - Steady -state

- As the next and final refinement of the steady-state model that we shall consider, we allow the motor angular sped ω to vary within the switching cycle. Again, we question the validity of our previous models. Returning to model \#l . which neglects all resistances, but letting ω vary, we see that the average voltage across the motor armature is still l known.

$$
v_{D} \text { average }=v_{a} \text { average }
$$

Referring to equation 1 , that is

$$
v_{\mathrm{a}}=\mathrm{k} \phi \omega_{3}
$$

v_{a} is no longer constant since ω varies.
However, knowing the average armature voltage allows us to determine the average di peed:

Thus

$$
\frac{1}{2 \pi} \int_{0}^{2 \pi} v_{a} d \theta=v_{a \text { average }}=\frac{k \phi}{2 \pi} \int_{0}^{2 \pi} \omega d \theta=k \phi \omega_{\text {average }}
$$

$$
\omega_{\text {average }}=\frac{v_{k a y e r a g e ~}^{\prime}}{k \phi}=\frac{g E_{b}}{k \phi} .
$$

However, in determining the current, we have some difficulty, from equation 9, that is,

$$
k^{\prime} \phi I_{n}=\alpha \omega^{2}+\rho \frac{d \omega}{d t^{2}}
$$

we see the current depends on ω^{2}. If we fry to average this relation, we have $\quad k^{\prime} \phi \frac{1}{2 \pi} \int_{0}^{2 \pi} I_{a} d \theta=k^{\prime} \phi I_{a}$ average

$$
\begin{aligned}
& =k \phi I_{a} \text { average } \\
& =\alpha \frac{1}{2 \pi} \int_{0}^{2 \pi} \omega^{2} d \theta+J_{2}^{2 \pi} \int_{0}^{2 \pi} d \sigma^{0} \\
& =\alpha\left(\omega_{r m s}\right)^{2}
\end{aligned}
$$

Thus the average current I_{a} is proportional to the mean-square of the speed ω_{*} There is no way to determine the rms or the mean square of to if we only know the average value of' ω. 'The relationship between these quantities depends on the specific waveform involved (recall that for a sine wave, $v_{r m s}=.707 \mathrm{v}_{\text {peak }}$, $v_{\text {aug }}=0$; for a full wave rectified sine wave, $v_{r m s}=.707 \mathrm{v}_{\text {peak }}, \mathrm{v}_{\text {aug }}=.636 \mathrm{v}_{\text {peak }}$).

Because the average current cannot be determined, the methods used in model Hz carnot be used. There is no way to "adjust" v_{a} and ω unless the average current is known. Whee shall have to apply the techniques used in model \#3, namely: write the system differential equations, impose the conditions of continuity of current and/or mood, requite hie variables to have tho same values at the beginnine and and of a steady-stabe cycle; and then solve the resulting equations at the appropriate instants of lime (or 0):

- As a matier of convenience, we rewrite the system equations:

$$
\begin{align*}
& \nu_{a}=k \phi \omega \tag{1}\\
& T=k^{\prime} \phi I_{a} \tag{2}\\
& T=J \frac{\phi \omega}{d t}+\alpha \omega^{2} \tag{9}
\end{align*}
$$

1
switch open

$$
\begin{equation*}
L \frac{d I_{a}}{d t}+R I_{a}+v_{a}=0 \tag{12}
\end{equation*}
$$

switch closed

$$
\begin{equation*}
L \frac{d I_{a}}{d t}+R I_{a}-\left(E_{b}-v_{a}\right)=0 \tag{13}
\end{equation*}
$$

198

$$
I_{\text {a }} \text { is continuous at switching times } \theta=\theta_{1}
$$

$$
\begin{equation*}
\text { and } \theta=0,2 \pi \tag{23}
\end{equation*}
$$

$I_{\text {a }}$ has the same value at $\theta=0, \theta=2 \pi$ and/or
ω is continuous at switching times $\theta=0_{1}$, ,

$$
\begin{equation*}
\operatorname{man}^{\prime} \theta=0,2 \tag{25}
\end{equation*}
$$

ω has the same value at $\theta=0,{ }^{\prime} \theta=2 \pi$.

We choose to solve for I_{a} as a function ot time. Eliminating the torque I in equations 2 and 9 ,

$$
\begin{equation*}
k^{\prime} \phi I_{a}=\psi^{J} \frac{d^{\omega}}{d t}+\alpha \omega^{2} \tag{2'7}
\end{equation*}
$$

Using equation 1 to eliminate v_{a} from equations 12 and 13 gives: switch open

$$
\begin{equation*}
L_{1} \frac{d I_{a}}{d t}+R I_{a}+k \phi \dot{\omega}=0, \quad \text { and } \tag{28}
\end{equation*}
$$

switch closed

$$
\begin{equation*}
L \frac{d I_{a}}{d t}+R I_{a}-\left(E_{b}-k \phi \omega\right)=0 \tag{29}
\end{equation*}
$$

If we now substitute equation 2 '7 int'o equations 28 and 29 in order to eliminate, $j \omega$, we would oome up with a set of fairly complicated non-linear. (squared terms) differential equations. For example, simultaneous solution of equations 27 and 28 yields:

Such complicated differéntial equations are frequently solved on an analog computer although a digital computer could also be used. Obviously equation 29 will yield an even more complicated expression. The analog computer can simulate both expressions (30 , and 29 and 27 solved together) with the appropriate switching functions. The solution, even using the computer, will be time and effort consuming. It is worth noting that if we had approached this problem by
writing down the system equations and solving as indicated in model \#t, the latively "easy" solutions of models $\nVdash 1,2$, and 3 would not, have been discuversd except by a great expenditure of time and effort, exen though those models may be valid in the particular physical situation being considered. The iturting I'ransiont - Cyclic Iteration

Assume the motor is to be started by cyclicly opening and closing the awlich (still representing the SCR eircuit as a switch as shown in figure 5 - 2). The starting current transient is important because the peak current determines the peak lorque applied to the motor rotor (whose windings could be damaged by excessive torque) and because the motor cireuit protection equipment (such as overeurront relays) must be set to accommodate the peak current. Large armature curronts could also damage the motor commutator or if of sufficiently long duratil(4), rause damaging lucal heating in various circuit elements. Iherefore we rhose to analyzo the starting current transient I_{a} ((t).
lixperience in starting DC motors tells us that the circuit resistance plays a non-negligible role in limiting the starting current. Hence our analysis must consider the circuit rosistance", the variation of I, and indirectly, the variation ot ω. We marght bo tompted to write the system equations and solve them starting from the initial conditions $1_{a}=0, \omega=0$. Recall from model \#4 that the resulting differential equation is very complicated and now the problem is even worse. In model $\not H^{\prime}$, we had only to determine. I_{a} during a single steadystate cycle. In the prosent transient problem, we must find $l_{\text {a }}$ during each cycle of a transient lasting possibly many thousands of switrhing rycles. While. it is possible that such a detailed calculation is necessary in certain specific cases, we consider some of the situations in which the transient solution can be simplified.

Suppose ω could be considered constant ${ }^{\text {s }}$ roughout a switching cycle due to the inertia of the rotor and propeller (as in model \#3). Suck an assumption
would be walid in the case that the change in a during a cycle and from cycle to cycle is small compaked to the value of w. Clearly, such an approximation Is questionable at the starting instant when $\omega=0$, but the accuracy of a solutdonibased on sush an assumption grows as w increases. Assuming w constant, during a cycle, we rewrite the system equations in differential (instead of derivatiue) form.

Equation 27 becomes

$$
\begin{equation*}
\operatorname{cis}^{\text {ocomes }} \tag{31}
\end{equation*}
$$

Equation 28 becomes

$$
\begin{equation*}
-\frac{\left(R I_{e}+k \phi \omega\right) \Delta t_{\text {eeen }}}{L}=\Delta I_{\text {a open }} \tag{32}
\end{equation*}
$$

Equation 29 becomes

$$
\begin{equation*}
\frac{\left(E_{b}-k \phi \omega-R I_{a}\right) \Delta t_{\text {clacied }}}{L}=\Delta I_{a} \text { closid } \tag{33}
\end{equation*}
$$

Figure $5-7$ show: that

$$
\Delta t=\Delta t_{\text {open }}+\Delta t_{\text {glosed }}
$$

and

$$
\Delta I_{a}=\Delta I_{a-p e n}+\Delta I_{a} \text { alosed }
$$

Note that in writing equations 31 and 32 we have tacitly assumed that the circuit time constnat I i i is so large that the exponential variation of armature current with time in a cycle can be approximated by a straight line as shown in figure 5-7. If this is not the case, the differential equations of model \#3 (constant ω) can be solved to give a more accurate $\Delta I_{\text {a ouen }} 1$

Figure 5-7

The solution to the problem can be approximated by an iterated solution of equations 33,32 , and 31 as follows

At $t=0, x_{a}=0, \omega=0$,
Solve equation 33 for Δ_{a} a closed
Next solve equation 32 for ΔI_{a} open still using the same value of ${ }^{1}{ }_{a}$ and ω as used in solving, equation Find $\Delta \mathrm{l}_{\mathrm{a}}=\Delta \mathrm{I}_{\mathrm{a}}$ closed $\mathrm{t}_{1} \Delta \mathrm{I}_{\mathrm{a}}$ open
a negative number
 -
Using $I_{a}=r_{a}$ previous cycle (0 for first time) $+\Delta I_{a}$, solve equation 3.1 for $\Delta \omega$.

Define a new $\omega=\omega$ previous cycle $+\Delta \omega$ for the next cycle and repeat the process until ΔI_{a} and $\Delta \omega$ approach zero.

Such a procedure is particularly suitable for digital computer calculation. The iteration procedure must be repeated until steady-state I_{a} and ω are reached, possibly involving thousands of cycles. Thus assuming ω constant during a cycle has made the problem much easier to solve although still not tractable for hand calculation.

$$
202
$$

The Starting Transient - Quasi-steady-state

In the case that the time required for the inotor to reach ateady-atate speed is. very long compared to L / R and the switching time Δt (note, we cant speak of a mechanical time constant because z of the nonlinear dependence of torque on ω^{2}), we can make "a further simplification. We assume brat. the electrical circuit is at the steady state behavior the circuit would have for a particular value of u 'The model In which'the steady-state is considered to vary slowly in time is sa sion to to in a "quasi-steady-state". In the quasi-steady-state, we car again average, the voltage across the inductor. Referring,
to figure ; - 4 ,

$$
\begin{aligned}
& v_{D}=L \frac{d I_{a}}{d t}+r_{a} R+v_{a}, \\
& v_{D}=L \frac{d I_{a}}{d t}+I_{a} R+k \phi \omega .
\end{aligned}
$$

Averaging,
since ω is "constant",

$$
v_{D} \operatorname{avg}=g E_{b}=0+R I_{\text {Gag. }}+k \phi \omega,
$$

or

$$
\begin{equation*}
g E_{b}=R I_{a} \text { ing }+k \phi \omega . \tag{34}
\end{equation*}
$$

Averaging the mechanical torque equation,

$$
\begin{align*}
& k^{\prime} \phi I_{a}=J \frac{d \omega}{d t}+\alpha \omega^{2}, \tag{21}\\
& \frac{1}{2 \pi} \int_{2 \pi} k^{\prime} \phi I_{a} d \theta=\frac{1}{2 \pi} \int_{2 \pi} \frac{d \omega}{d t} d \theta+\frac{1}{2 \pi} \int_{2 \pi} \alpha \omega^{2} d \theta .
\end{align*}
$$

Since ω varies only slowly within a cycle, ω^{2} is again assumed constant and

$$
\begin{equation*}
k^{\prime} \Phi I_{\text {a }} \alpha \underline{d g}=J \frac{d}{d t} \text { avg. }+\alpha \omega_{\text {avg }}^{2} . \tag{3j}
\end{equation*}
$$

nlthough we could tate equations 34 and 3$\}$ and solve them by an 1 iterative technique using one iteration per switching cycle, we choose a different and faster technique. The average for one cycle of a steady -state variable is the same as her average over two, three, or any number of cycles. Therefore we define a new time interval $\Delta \boldsymbol{T}$, long compared to $1 / \mathrm{R}$ but short compared to Che time required for the transient to end. $\Delta \boldsymbol{T}^{\boldsymbol{T}}$ must also contain an integer number of switching cycles, but that number may be hundreds of switching cycles. We then solve the following, equations by-iteration

$$
\begin{align*}
& R I_{a} \text { avg. } \sum_{b}-k \phi \omega \tag{34}\\
& \Delta \omega=\frac{\left(k^{\prime} \phi I_{m e r g}-\alpha \omega_{\text {ava }}^{2}\right) \Delta T}{J} \tag{36}
\end{align*}
$$

For example, at. $\mathrm{t}=\mathrm{O}=0$

$$
\begin{aligned}
& \because \quad \text { Solve } 3 \lim ^{\prime} \text { for } \mathrm{I}_{\text {a ave; }} \text {, } \\
& \text { then : :01ve } 3 t \text {, for } \Delta \omega \text {, * } \\
& \text { and repeat. }
\end{aligned}
$$

A table provides a convenient way to carry out the computation

such a system may require only 5 or 10 iterations wo achieve the tees accuracy and is thus amenable to hand calculation. The current waveform from such a calculation may have the form shown in figure $5-8$.

$$
20.4
$$

The size of the current "wiggles" could be estimated by taking the known average values of I_{a} and ω and substituting them into equation 32 to estimaté ΔI_{a} open ${ }^{\text {. }}$ If the physical parameters such as the size of L, R. J, and α permit such assumptions, we have simplified the transient calculations by ac factor of many thousends.

Surmary
In this chapter", we modeled a nonlinear system in a manner similar to that of chapters 1 and 3 in order to find the steady-state behavior. As the model was refined step by step the diffilculty in solving the problem drastically increased step by step, once again demonstrating the disadvantages of analyzing a problem starting from the detailed system equations. If we had begun with a | very refined model (such as model \#4) we might never have been able to solve a possibly simple problem. A fairly detailed analysis of the steady-state was -presented using the basic idea of a steady-state cyclic process; i.e., $f(\theta)=f(\dot{\theta}+2 \pi)$. Thus we were able to "skip" to the steady-state instead of following the variables through a starting transient to get to the steadystate.

$$
205
$$

In considering the turn-on transtent of the system, while everythine upeared significant at first, we wer able to use the steady-state models - a logical framework which we retraced to simplify the problem. 'Thus the steady-state reftnements were not, wasted, but on the contrary were extremely helpful in determining the methods of simplifying the problem in addition to providing the final values for the variables undergoing a transient.. The steady-state models and the cychic process idea allowed us to make an easy step in our considerations to a differant kind of model, the quasi-steady-state model, of the circuit behavior. In turn, the quasi-steady-state model shortened enormously the amount of calculations required to solve the nonlinear differential cquations associated with the system. Nlthough in some specific problems, the simplitied solutions may not be valid and there may be nq escape from the tedious Tand time consuming solution of the detailed system equations, the procedure used here (stady-state model \rightarrow refined steady-state models \rightarrow detailed transient model \rightarrow simplified transient model) is a powerfulmeneral. tcchnique used in solving transient problems.

Exercises

(1). A centrifugal water pump is used to drain a pit containing water. Dotermine the steady-state torque-speed characteristic of the "pump knowing:
(a) : $11=20$ feet
(b) pump efficiency $=86 \%$
(c) the pump delivers 20 gal of water/min when aperated at 1800 rpm

(2) For the problem "Considered in this chapter, determine the' equations or equations to be solvadoby iterative means yielding I_{a} and ω as functions of time for the case that L is so large that it limits the current and speed transient. rather then the system's mechancial inertia. *

Problem 1
A deep sea submersible is driven by a direct current motor (battery power supply) directly coupled to the main drive propeller. The battery voltage is 200 volts. The motor is rated at 10 hp , 200 volts, $900 \mathrm{rpm}_{\text {, }}$ the motor is shunt field excited by'directionnection to the battery. The propeller has a torque
 the propeller.

An $B C R$ system is chosen to regulate the propeller speed. Clearly, resistor cont wo would be wasteful of bate ry energy and submersible cruising time 2. valued around $\$ 2,000 / \mathrm{hr}$ (since the battery would need more frequent charging) . The circuit shớw below:

 g ere and $S C R_{1}$ is triggered 1 msec later (on -2 macc, off 1 mses).

Calculate the speed of the propeller, $I_{a}, T_{b} ; V_{b}, V_{m}$ assuming the inters are ordinary D'Arsonval meters. (they read "average")

- Asa first cut at the problem, you may assume ω is constant

Problem 2

During a disasterous rainstorm and flood, the motor drives a centrifugal pump used to drain a leaking cellar. The pump will wear out if the water intake should go to zero. Therefore the pump speed muint be matched to the rate that water leaks into the cellar. Note, with a centrlfugal pump, this rate of discharge is proportional to the speed. Since the kinetic energy associated with the water flow is proportional to the discharge velocity squared, the torque "r" is proportional to ω^{2}. The pump requires 10 hp at 1.800 rpm .

Some meaiured constants of the system are:

$$
\mathrm{R}_{\text {series flad }}+\mathrm{arm}=\dot{0} \dot{0} 0 \Omega
$$

${ }^{L}$ series fld $=0.2$ henry

$$
J=0.25 \mathrm{~kg} \mathrm{~m}^{2}
$$

 and the speed ω (in rpm).

$$
20
$$

(B) Assuming the GCR's and the fidode can handle the current, determine $I_{A}(t)$ and $\omega(t)$ for the starting transient, i.e., at $t=0, \omega=0, E=200$ volts, and the SCR's switch as before. Outline your method in detail and carry, it. through.
(3) Could the starting current amplitude be reduced by leaving SCR ${ }_{2}$ turned on for 2 msec instead of only one?

Laboratory Problem 1 .

There are a number of ${ }^{+}$compound wound DC motors in the laboratory. Using the circuit below as a speed controller, you are to determine:
a) the tionquespedreharacteristics of the motor for all. possible cionstant speed "settings" of the controller.
b). the time required for the system to reach steady state under no-load ronditions.
Since the machines in the laboratory will only be available to you for a short time, it is suggested that you may not have surficient time to construct the circuit and make tise required measurements directly.

laboratory Problem?

The circuit below is used to control the speed of a shant-wound DC motor. The motor is mechanically connected to a matched mechanical load whose torque is proportional to speed. You are required to determine
(a) the voltage and current ratings of the SCR's and diode
(b) the size of C, I_{1}; and I_{2}
(c) the baste scheme for a logic, circuit to trigger the SCR's. The logic circuit does not have to be designed In detail, but the components must be specified sufficiently and realistically enough that the circuit could be designed and built on the basis y of your specification. The logic circuit should have provination for starting the motor , under load.

(1) Nielsen, Kay L., Methods in Numerical Analysis, Macmillen (?), New York, 1956.

This reference outlines many useful techniques for solving systems - of equations and differential equations by numerical techniques, adaptable for hand or computer analysis.
(2) Fitzgerald, A. E. and Kingsley, Charles Jr. pilecitric Machines, last Ed., McGrew-Hill, New York,'1952.

This is a general. text regarding the behavior of $A C$ and $D C$ machines. The first edition is particularly good in describing and calculating the nonlinear properties of rotating machines as well as the underlying physics of operation.

Appendix

The following is a suggested rough guide for a time schedule of presentation of material, allowing sufficient time tor detailed discussion of one "problem" and one laboratory problem" per chapter in a small class ($1.5-25$ stiudents).

| Chapter 1. | 3 weeks |
| ---: | ---: | ---: |
| 2 | 3 weeks |
| 3 | 2 weeks |
| 4 | 2 weeks |
| 4 | 3 weeks |

In the case of smaller classes, a longev term, or particularly able students, further topics may betconsidered. 'l'he following are.ol't'ered as sug1 gestions.
6) The Parallel (apacitor commutated Inverter with an Inductive load Thi's problem, discussed in some detail in Principles of Inverter cirquit:; by Bedtord and llort, is particularly suitable for modeling on an analog or hybrid computer.
'77) The problem of producing an approximate sine wave by summing the outputs of several square-wave inverters with differing ampliturdes and phases but the same repetition rate is aseful example of designing a circuit (choosing the phases and amplitudes) on the basis of a simplitied model of operation. The problem can be generalized into designing the 3 phase, harmonic neutralized inverter. Wuch problems are most instructive if the third and fifth harmonics are absent from. the desired ontput sine wave. Again, Principles of Inverter Circuits by Bedford and Hoft is an excellent beginning reference for the problem. An additional helpful
relerence is Kernick, Roof; and Heinrich," Statie Inverter with Neutralizationjof Harmonics", ATEE Transactions, Pt. II, Vol. 81 (May, 1962), pp. 5968.

[^0]: INote that by convention ρ is used both for charge density and resistivity. 9. (charge density) has units of coulomb/meter ${ }^{3}$ while ρ (resistivity) has inits ohm meter.

[^1]: In analyzing the line voltage commutated inverter or phase controlled rectifier we have used the method of "iterative modeling". The circuit was simplified to a point where it could be understood and analyzed with reasonable facility, This was the most difficult step. If the circuit had been over simplified it wouldn't work, and another model would have had to be invented. The model was then refined by steps or iterated until the model and its solutions gave sufficient ry accurate and valid results.

 The iterated modeling technique is an important and powerful analysis technique. Each model brings an increased understanding of the circuit operaLion and the importance and roles of the circuit components as the solution is approached in a step-by-step logical manner. Such understanding is extremely

